
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS 4
FLEET NUMERICAL OCEANOGRAPHY CENTER

SOFTWARE DEVELOPMENT STANDARDS: AN

IMPLEMENTATION OF DOD-STD-2167A

by

William T. Livings

September 1989

Thesis Advisor: Barry A. Frew

Approved for public release; distribution is unlimited

UNCLASSIFIED
SECURiTV C[-AJViFcATI?*N OF ~XT

REPORT DOCUMENTATION PAGE 46N01 1O

10 REPORT SET.,R, 'Y LAW ' ' Ar ION In R , ' 1..'

UNCLASSIFIED ___________________

2. SECURITY C.LASSIFICAtrION AUTHI)W1'1Y* II T W~t. A A A L T 01' 1i~

1b_____________________________________o~
Approved for public release;

Zb ECLSShCAION()NI1 4AD1 1 SIIEII Idistribution is unlimi ted

4 PR FUIMIN(j ORcJANIZIA RNIL I0(I4 NIJiMULIII, lj 777 ,77i IIU ./ T 141,4 't 'fl 780"

6a NAME OF PERFORMING ORGANIZATION I6b OF~iCE SYMBOL la NAME OF MONI TORING OIWGANj 1.T (A

(if applicable)

Naval Postgraduate School Code 54 Naval Postgraduate School

6C, ADDRIFESS (City, State, anld ZIP Code) 11) ALJL)*E SS (City, State, and IIP Cool#)

Monterey, California 93943-5000 Monterey, California 93943-5000

88. NAME OF FUNDING /SPONSORING 8 b OFFICE SYMBOL 9 PROCUREMENT INSrRUMENT IDENTIFICATION NUMBER
ORGANIZATION I (if .9pplicpble)I

8c, ADDRESS (City, State, adi ZIP Code) T0 'QjW((0I FIADD. .UTIE RS
PUOWjPAW II()Jk(T 'ASW *O 11~ UNIT

11 TITLE (include Security Clagiicaftti)
M N NO I oINoA

LS CNN0

FLEET NUMERICAL OCEANOGRAPHY CENTER SOFTWARE DEVELOPMENT STANDARDS: AN
IDIPLEMENTATION OF DOD-STD-2167A
12 PERSONAL AUTHOR($)

LivincisWilliam To
0&. TYPE OF REPO RT IT b TIME COVERED 14 DATE OF REIPORT (Year, Month,, Day) T'_5 PAC,E (.

Master's Theisis IFROM TO To 1989, September I125
16 SUPPLEMENTARY NOTATIONI
The views expressed in this thesis are those of the author and do not reflect the offi-
cial plic or psition of the Depatel fDfnen h _q n~nrM4

19 AeSTRACT (Continue on reverse of necessary end identify by block nLTlbt")
Software development standards arc integral to any organization's soft-

arc development efforts and are essential to the development life cycle.
hay arc vital in ensuring on-time delivery of more reliable and maintain-
ble software products. The trend in software development is toward a
tructured, Systems engineering approach based on standard practices,
ethodologies and rigorous management control. DOD-STD-2167A establishes
niform requirements for software development that are applicable through-
ut the system life cycle. It provides a basis for government insight into
contractor's software develcpment, testing, and evaluation efforts. This

thesis examines the possibility of developing a generic, tailored version
Df DOD-STD-2167A that would apply to an activity's or general project
rategory's software development needs. The analysis indicates that a
tailored version of the standard can be developed to at least eliminate
20 DISTRIBUTION I AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURl ! C,AS J (A1I)N

EJUNCLASSIPIED/UNLIMITf ED 0 API/E AS RPY 0 r),r usfs Unclassified
22a NAME OF E P 'ij. I Iftl),iAL f'P) TfLI Po*i~o1 (InoriudC A,.'-g IOle) *', i 14 41

iProf.- Barry A. Frow (Q11rioqAr.
DD Form 1 413, JUN 86 'Ciij 'iI ' ti)P ,i I.

ij j-~-~I i~4~~6 UNCLASSIrIED

UNCLASSIFIED

SECURITy CLASSiF C . . T -

#19 - ABSTRACT - (CONTINUED)

some requirements for a project manager when dealing with
an activity's or project category's software requirements,
thereby reducing superfluous and duplicative activities.

DD Form 1473, JUN 86 Re. -. - ,

ii UNCLASSIFIED

Approved for public release; distribution is unlimited

Fleet Numerical Oceanography Center Software Development
Standards: An Implementation of DOD-STD-2167A

by

William T. Livings
Lieutenant, United States Navy

B.S., Louisiana State University, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 1989

Author: _____ _4 _ _/

William T. i [s

Approved by:Aprvdb:Bar P A. FeThesis Advisor

Tarek Abdel-Hamid, Second Reader

Dav idii--Oipp ChairmanDepartment of Administr e S ciences

ABSTRACT

Software development standards are integral to any

organization's software development efforts and are essen-

tial to the development life cycle. They are vital in

ensuring on-time delivery of more reliable and maintainable

software products. The trend in software development is

toward a structured, systems engineering approach based on

standard practices, methodologies and rigorous management

control. DOD-STD-2167A establishes uniform requirements for

software development that are applicable throughout the

system life cycle. It provides a basis for government

insight into a contractor's software development, testing,

and evaluation efforts. This thesis examines the possibili-

ty of developing a generic, tailored version of DOD-STD-

2167A that would apply to an activity's or general project

category's software development needs. The analysis indi-

cates that a tailored version of the standard can be

developed to at least eliminate some requirements for a

project manager when dealing with an activity's or project

category's software requirements, thereby reducing super-

fluous and duplicative activities.

iv

TABLE OF CONTENTS

I. INTRODUCTION 1------------------------------------ 1

A. STANDARDS AND THE DEVELOPMENT PROCESS 1-------1

B. OVERVIEW OF THE COMMAND 5--------------------- 5

C. SCOPE OF RESEARCH 8---------------------------8

II. TAILORING PROCESS/PROCEDURES --- I0-------------- 10

A. INFORMATION SYSTEMS/SOFTWARE REQUIREMENTS --- 11

B. DOD-STD-2167A ------------------------------- 13

C. METHODOLOGY --------------------------------- 15

D. REFERENCE DOCUMENTS: RELATIONSHIP OF
DOD-STD-2167A TO OTHER STANDARDS ---------- 22

III. SUMMARY/RECOMMENDATIONS ------------------------- 39

APPENDIX A: MAJOR PROJECTS --------------------------- 44

APPENDIX B: INTERMEDIATE PROJECTS -------------------- 73

APPENDIX C: MINOR PROJECTS --------------------------- 75

APPENDIX D: SOFTWARE MAINTENANCE --------------------- 102

APPENDIX E: SOFTWARE QUALITY ASSURANCE --------------- 108

APPENDIX F: SOFTWARE METHODOLOGY: PROTOTYPING ------- 112

LIST OF REFERENCES ------------------------------------ 117

INITIAL DISTRIBUTION LIST ----------------------------- 119

V/

I. INTRODUCTION

A. STANDARDS AND THE DEVELOPMENT PROCESS

Software is one of the fastest growing and most expen-

sive elements of information systems today. As computer

hardware becomes more powerful and less costly to acquire,

software development costs escalate. It becomes even more

costly to maintain or modify, especially if it wasn't

developed properly or didn't fulfill the user's require-

ments. In fact, software development has become the major,

present day constraint or "bottleneck" to the timely deliv-

ery of effective, useful information systems.

Building adequate computer-based systems is a signifi-

cant challenge, and software is often a primary stumbling

block. People create programs that don't function properly;

programs that do work, but don't do what the users really

want; programs that can't be easily changed or corrected

when errors are found; and programs that are delivered for

use months or even years too late. (Pressman, 1988, pp. I-

2) Software continues to absorb a larger and larger percen-

tage of the overall development cost for computer-based

systems. People/organizations spend billions of dollars

each year on the development, acquisition, and maintenance

of computer software. Pentagon expenditures for mission

critical software totaled $11 billion in 1985 and it is

1

predicted that by 1990 the amount will more than double

accounting for roughly 20% of everything the Pentagon spends

on weapons (Newport, 1986, p. 133). It is also reported

that industry-wide, "75% of the time, businesses never use

the software programs they undertake, either because they

never complete them or because they arrive too late."

(Newport, 1986, p. 132)

All of this alludes to a "software crisis" in the devel-

opment of today's computer software and indicates that the

traditional method of developing software is not working.

Problems are not limited to software that "does not function

properly." Rather, the "software crisis" encompasses prob-

lems associated with how we develop software, how we

maintain a growing volume of existing software, and how we

can expect to keep pace with a growing demand for more soft-

ware (Pressman, 1988, p. 10).

There is no single best approach to solve the software

crisis. However, by combining comprehensive methods for all

phases in software development, better tools for automating

these methods, more powerful building blocks for software

implementation, better techniques for software quality

assurance, and an overriding philosophy for coordination,

control, and management, we can achieve a discipline for

software development--a discipline called software enqineer-

ing. (Pressman, 1988, pp. 11-12) In fact, the current

trend in software development is transforming the

2

Development Life Cycle from a seemingly haphazard, trial and

error process into a discipline based on standard practices,

methodologies, and rigorous management control (Newport,

1986, p. 135).

Integral to this new way of thinking has been the devel-

opment and establishment of software development standards.

Software standards are vital in ensuring on-time delivery of

quality software products and in minimizing maintenance

costs. Standards are useful and equally important in all

phases of the Software Development Life Cycle from require-

ments analysis and design, through coding and testing, and

even into the implementation and maintenance phases.

Standards must not only be developed, they must also be

adhered to and their use enforced if they are to prove bene-

ficial to your software development efforts. Focusing on

standards to improve development efforts leads to reduced

maintenance problems as the members of the development team

are now following the same standardized set of development

practices and techniques, thereby reducing the number of

individual perceptions and misunderstandings of users'

requirements and how they are to be achieved. The overall

quality of software products can also be improved by stan-

dardizing the practices of programmers during the entire

Life Cycle of the product. It is even reasonable to assume

that consistent documented terminology and project standards

improve communication among team members and result in fewer

3

interpretations (Poston, 1984, p. 96). Standards serve as a

"written, usable formalization of experience--successful

experience. Their use overcomes a common problem: most

project experience is lost, or at best handed down by word

of mouth or individual behavior." (Braverman, 1979, p. 81)

Thus, standards "reduce the vulnerability of the project to

personnel turnover and time lost getting new personnel up to

speed." (Peters, 1981, p. 103)

Overall, benefits accrue by adopting and enforcing soft-

ware development standards. The goals of standards are

many--good schedule and cost performance, high product

reliability, adequate documentation, increased productivity,

smooth development and delivery, higher quality software,

machine independence, more productive work force, and

reduced production and maintenance costs (Tausworthe, 1978).

All of this evidence indicates that in the final evalua-

tion, standards, if used, can contribute to better quality

software. Standards "can be used to ensure that each and

every module in a system, and the "ecisions which lead to

this configuration are all established and documented at

central checkpoints during the design effort." (Peters,

1981, p. 103) As a result, software both meets the require-

ments of the user, and is maintainable throughout its

lifetime. In the long run it offsets an initial investment

required to establish software development standards.

4

B. OVERVIEW OF THE COMMAND

The Fleet Numerical Oceanography Center (FNOC) in

Monterey, California is the U.S. Navy's primary

meteorological and oceanographic analysis and forecast

facility providing unique global environmental information

to the entire Naval establishment and to approved civilian/

commercial users. FNOC's mission is "to provide operational

numerical oceanographic and atmospheric products peculiar to

the needs of the Department of the Navy; and to develop and

test numerical techniques t; solve oceanographic analytical

and forecasting problems as directed by the Commander Naval

Oceanographic Command." (FNOC 1986 Master Plan, 1986, p. 4)

FNOC provides worldwide environmental information sup-

port by monitoring a computerized forecasting process to

ensure timely production of high quality products Conven-

tional and satellite environmental data from around the

world is received through land-line and satellite data

links. These raw data are automatically sorted, edited, and

analyzed to represent current atmospheric and oceanic condi-

tions. This analysis provides initial conditions from waich

numerical forecasts of the future state of the atmosphere

and ocean evolve. A series of advanced atmospheric, ocean,

and air-ocean prediction models generate a four-dimensional

measure of the future air-ocean environment, typically, up

to three days in advance. These forecast products are used

to produce a variety of performance assessments for specific

5

tactical weapon systems and platforms. In addition,

environmental analyses and forecasts are transmitted on

high-speed computer links to Navy oceanography centers and

detachments around the world to satisfy user requirements.

(FNOC Change of Command Brochure, 1989, p. 2)

FNOC operations revolve around a large, intricate and

growing computer and communications system. Five depart-

ments provide support to the command and ensure the success-

ful accomplishment of its day-to-da' support mission. The

Computer Systems Department is the largest department,

responsible for operating and maintaining the larger main-

frame and super computers in the command. These include the

Primary Environmental Prediction System (PEPS), the PEPS

Upgrade (PEPSU), the Hydro Climatology Computer (HCC), and

the Satellite Processing Center (SPC). The Data Integration

Department is responsible for receipt and processing of raw

environmental data, implementation, and maintenance of

advanced meteorological and oceanographic analysis and

forecast models, archiving of raw data and analyzed fields,

quality control of all environmental analysis and forecast

products, and management of FNOC's Environmental Satellite

Data Processing Program (FNOC Change of Command Brochure,

1989, p. 4). The Fleet Applications Department meets the

requirements of operating forces for specialized environmen-

tal information by creating a variety of tailored "end-user"

products fron analyses and forecasts of the air-ocean

6

environment, and includes such systems as the Optimum Track

Ship Routing (OTSR) System and the Optimum Path Aircraft

Routing System (OPARS). The Field Support Department pro-

vides engineering and logistics support to the diverse

communications and display systems required by FNOC and

other Naval ocea- graphy command activities and includes the

Naval Environmental Data Network (NEDN) and the Naval

Environmental Display Station (NEDS). The Supply and Fiscal

Department manages FNOC's budget and performs all other

supply and financial related functions pertaining to the

command.

Needless to say, this is a complex, intricate and expen-

sive operation. FNOC is the Navy's only operational atmos-

pheric and oceanographic forecasting center with advanced

data processing and communications systems. The principal

processing task at FNOC is the running of global environmen-

tal prediction models. This is accomplished with the

primary environmental processing systems, PEPS and PEPSU.

The PEPS system is dedicated to global analysis, global

prediction and tailored product output to support Naval

operations. Therefore, this system must be extremely

responsive to fulfill all of the users' needs and require-

ments. However, much of the FNOC software running on the

PEPS mainframes is very old and poorly documented.

FNOC's evolution of software has created an inventory of

operational computer programs throughout the command which

7

is heavily marhine and operating-system dependent and

difficult to maintain. FNOC's method for addressing this

problem is to use a special project, the Software Improve-

ment Program (SIP). The SIP uses an incremental approach to

the modernization of existing software. SIP maximizes the

value of past software investments and at the same time,

increases the reliability, efficiency, portability, and

maintainability of the software. Software modifications

range from simple translation of code to complete systems

re-engineering. Whenever possible, existing code is

salvaged and improvements are retrofitted. (FNOC SIP Macro-

plan, 1988, p. 3) The primary goal of the SIP is

to enable FNOC to more effectively carry out its mission
by making its software more maintainable, portable, and
reliable, thereby extending its useful life. A closely
related goal is to make software more hardware--and
operating-system--independent, thereby reducing the costs
and difficulty of software conversions caused by
competitive hardware acquisitions. (FNOC SIP Macroplan,
1989, p. 3)

The FNOC SIP will establish a systems development and

maintenance environment which will help improve the overall

quality of future software developed for, or maintained by,

FNOC.

C. SCOPE OF RESEARCH

The scope of this thesis is to ascertain the feasibility

and usefulness of tailoring the DOD-STD-2167A to meet Fleet

Numerical Oceanography Center software development needs.

Research will explore the options of developing a single

8

tailored version of the standard as opposed to multiple

versions, according to some generic categorization of FNOC

software development projects, to meet FNOC software needs.

Initially, this research involved a review of the general

need and importance of standards on software development

followed by a determination of FNOC missions, functions and

objectives, and the special importance that good, structured

software development has on the successful accomplishment of

its missions and objectives. Following this is a review and

analysis of the DOD-STD-2167A and how it relates to FNOC

software development. Tailoring of the DOD standard

involved tailoring of the standard's requirements, data item

descriptions, and any formal reviews and audits deemed

appropriate for FNOC software needs and requirements. The

resulting tailored versions of the standard are included in

this thesis as appendices. Other appendices will address

the areas of software maintenance and quality assurance,

their relationship (or lack thereof) to the standard and

their relative importance to software development in

general. The last appendix provides general guidelines or

standards to follow when employing prototyping as a part of

the Life Cycle Methodology. DOD-STD-2167A's relation to

other military standards and specifications are addressed in

the body of the thesis.

9

II. TAILORING PROCESS/PROCEDURES

FNOC intends to use the tailored version(s) developed

from this research effort as a starting point, or reference

point for a much broader, more detailed command-wide

instruction or set of instructions covering all phases of

the Software Development Life Cycle. It will serve as an

"umbrella" under which detailed sub-sets of instructions/

methodologies will be placed. The SIP Software Engineering

Technology is the approach FNOC will take to improve or

reengineer their software. Its methodology consists of

selected structured analysis, design, programming, and

testing techniques and procedures; a set of supporting

software tools; a set of standards and guidelines; a quality

assurance and configuration management plan; and a training

program designed to facilitate the implementation of the

methodology. A baseline of software engineering elements

will be developed, fccusing initially on the SIP but with

the ultimate goal of implementing those elements command-

wide. This baseline may change as elements are used and

evaluated as the SIP matures. (FNOC SIP Macroplan, 1988, p.

13) For example, DeMarco's methodology for structured

analysis, Yourdon's methodology for design, and Chen's

methodology for database/modeling will be used, supported

with case tools, in their respective phases of the Life

10

Cycle. These methodologiscz will be c.fined to meet local

needs, standardized and documented, and placed under the

"umbrella."

A. INFORMATION SYSTEMS/SOFTWARE REQUIREMENTS

Applications software at FNOC performs a number of spe-

cific functions, but in general terms it can be divided into

five functional categories:

1. Software that manipulates input/raw data.

2. Software that analyzes and prepares data for models
(data assimilation).

3. Software that models data (algorithmic calculations
and forecasts).

4. Software that takes output from models and builds
products.

5. Software that transports products (communication

software).

FNOC software development is done primarily by contrac-

tors and Navy R&D laboratories, although recently FNOC has

started to undertake in-house development of some of their

software. Most of the in-house efforts enhance and maintain

software and convert deliverables to a form which can be

implemented operationally. Because of the complexity of

some software, it is being maintained by the original pro-

grammer even though that individual may have been transfer-

red to another department. Other reasons some of the

software is difficult to maintain include:

1. Use of machine-specific assembly languages that few
individuals at the command know.

11

2. A workload that does not allow programmers time to

cross-train.

3. Lack of local software engineering standards.

4. A large number of undocumented software modifications
applied over time.

Frequently, after delivery of a product, in-house conversion

is necessary to create operational software due to inade-

quately written specifications or because different

standards and procedures were used during the development

process than are being used at FNOC. This conversion is

also necessary to move the software into the operational run

environment. (FNOC SIP Macroplan, 1988, p. 29)

Existing standards at FNOC primarily deal with coding

and documentation in the PEPS environment. DOD Automated

Information Systems (AIS) documentation standards (DOD-STD-

7935A) is presently being used, but no other standards are

being rigorously followed for directing the Development

Cycle. Software Quality Assurance is performed almost

entirely by the programmers of the software. Requests for

new products or changes to existing products are handled in

a variety of ways, from formal requests to simple phone

calls from users. Changes to software are frequently made

on the initiative of the responsible programmer, who

uncovers problems or recommends improvements based on moni-

toring of operational products. (FNOC SIP Macroplan, 1988,

p. 30) Obviously, one can see the need for standards not

only in the area of full scale software development, but

12

also in the area of modifying or enhancing existing soft-

ware. The SIP will be the vehicle for establishing a modern

and effective systems development and maintenance methodolo-

gy. Not only will this standard methodology be used at FNOC

and on PEPS software, but eventually it will be used for

other Information Systems (ISs) and at the Research and

Development Activities that support FNOC. This will help

prevent the existing software problem from recurring again

in the future. (FNOC SIP Macroplan, 1988, p. 7)

B. DOD-STD-2167A

An integral part of the SIP will be the development/

establishment and enforcement of standards. DOD-STD-2167A

establishes uniform requirements for software development

that are applicable throughout the System Life Cycle. It

provides the means for establishing, evaluating, and main-

taining quality in software and associated documentation.

(DOD-STD-2167A, 1988, pp. iii/iv) The standard provides a

broad framework for software development, leaving applica-

tion specific details to the discretion of the user or

program manager. It provides specific milestones or

deliverables identified for each development phase in the

form of its Data Item Descriptions (DIDs). DIDs describe a

set of documents for recording the information required by

DOD-STD-2167A.

SECNAVINST 5000.1B (1983) mandates the use of DOD-STD-

2167A in the development of mission-critical computer

13

software by contractors or government agencies. The general

framework of the standard can be tailored to any software

project, thereby providing a formalization of the develop-

ment process for both mission-critical and non-mission

critical computer system software. The standard contains a

set of requirements designed to be tailored for each

contract by the contracting agency (DOD-STD-2167A, 1988, pp.

1/2). Per Department of Defense Directive (DODD) 5000.43,

Acquisition Streamlining, "this standard must be appropri-

ately tailored by the program manager to ensure that only

cost-effective requirements are cited in defense solicita-

tions and contracts." (DOD-STD-2167A, 1988, pp. iii/iv)

The tailoring handbook states "DOD-STD-2167A contains

requirements for the acquisition, development, and support

of software systems. For contracting agencies to effective-

ly apply the standard, it is important that they tailor the

requirements of the standard to meet the objectives of the

specific system." (MIL-HDBK-287, 1989, Foreword) DOD-STD-

2167A and its DIDs provide a maximum set of requirements.

They are specifically designed to be tailored down to

include only those requirements that are needed for a given

project. The tailoring handbook also states, "tailoring

must be performed for each acquisition, development, or

support contract issued during the system acquisition

process. As objectives and tasking change during that

14

process, tailoring decisions for each contract will change

accordingly." (MIL-HDBK-287, 1989, p. 17)

Tailoring the DOD-STD-2167A from the "big picture"

perspective is a two-step process. One must first tailor

the requirements of the standard itself. These tailoring

decisions form and are specified in the contract's statement

of work (SOW). Secondly, DOD-STD-2167A is the parent

standard for 17 data item descriptions (DIDs). Each DID

specifies the required content for a particular deliverable

document. Selection of appropriate DIDs and deletion of

inappropriate content within those DIDs is a key part of the

tailoring process (MIL-HDBK-287, 1989, p. 10). Tailoring of

DIDs is specified on the Contract Data Requirements List

(CDRL) form. Each deliverable is specified in a CDRL item.

It should also be noted that DOD-STD-2167A contains a

number of selected requirements that are considered self-

tailoring. They are referred to as "shell requirements."

These are requirements whose specifics or tasks are not

required unless specific direction is included in the

contract. These paragraphs are discussed in paragraph 4.2.7

of the tailoring handbook. (MIL-HDBK-287, 1989, p. 10)

Figure two of MIL-HDBK-287 presents these requirements.

C. METHODOLOGY

Although DOD-STD-2167A was designed with the intent to

be tailored to the given requirements of each individual

project or contract, a major premise of this research effort

15

was to determine if some generic version of the standard

could be developed that would apply to an activity's or

general project category's software development projects.

That is to say, some skeletonized version of the standard

that would automatically eliminate and/or add requirements

for a project manager when dealing with a particular

activity's or project category's development requirements.

Jane Radatz from Logicon, Inc., principal author (in

conjunction with the DOD) of the DOD-STD-2167A and developer

of the automated tailoring software package "Tailor," stated

that the intent and design of DOD-STD-2167A was to tailor it

to meet the individual needs and requirements of a specific

system, development project or contract. She further

commented that to apply generalized "tailored" versions of

the standard to meet the development needs of categories of

software would be difficult and only possible if the

projects within a category were so similar in nature so as

to produce the same set of deliverables. Even then further

refinement of the "tailored version" would probably be

necessary for each specific project. (Telephone

conversation between Jane Radatz, Logicon, Inc., and the

author, 17 May 1989)

David Maibor, principal author of DOD-STD-2167, also

agreed, and felt that tailoring of the DOD-STD-2167A was

mostly dependent on the personal biases of the project

manager, the number of Computer Software Configuration Items

16

(CSCIs) in the project, and the level to which he/she may

decide to decompose and test the Computer Software Compon-

ents (CSCs) and Computer Software Units (CSUs). A tailored

version for a category of software projects would be diffi-

cult to establish and still might not be useful in every

case. (Telephone conversation between David Maibor and the

author, 17 May 1989)

Several FNOC project managers and software personnel

were interviewed and asked to respond to the 27 high-level,

system project description questions in the "Tailor"

software package. For the most part, responses were varied.

In some cases, respondents were unfamiliar with certain

aspects of DOD-STD-2167A and its terminology/acronyms, and

therefore, did not know how to respond to some of the ques-

tions. In other cases, they would attach assumptions or

constraints to their responses and on many occasions would

respond with the comment "project dependent." When ques-

tioned, ALL respondents were of the consensus that to cate-

gorize FNOC software into "general" project categories, at

least with regard to the DOD-STD-2167A, would be more

practical and useful than trying to apply a tailored version

of the standard to meet all FNOC software needs.

As a result, tailoring the standard according to the

general project categories of Major, Intermediate, and

Minor, as espoused by Barry Boehm, was determined to be the

most applicable for FNOC's needs. Other categories were

17

considered, but were determined to be either too restrictive

in scope or too dependent on one overriding characteristic.

For instance, the project categories of Small, Medium, and

Large denoted too much of a dependency on project size.

Categorizing projects according to size, because of this

dependency, may not always be appropriate. There may be a

situation where a "Small" project's single product may be so

complex and interdependent that it is more appropriate to

tailor as a Large project. On the other hand, a "Large"

project could result in a number of products that are

relatively independent of one another and therefore does not

require the same rigorously managed set of requirements and

deliverables as some other project of the same category.

Dividing projects into categories according to complexity

also lent itself to a similar set of problems, restrictions,

and variables. Dividing software development into categor-

ies of System Software and Application Software was

considered, but was also felt to lead to unreliable results.

There may be situations where project requirements for an

application software development effort more closely

resemble those of a System Software project (or vice versa),

maybe because of scope, the number and types of products,

and/or operating environment. As a result, a project may

follow a version of the standard more applicable to the

other category.

18

It was felt that Boehm's categories of Major, Intermedi-

ate, and Minor were general enough to afford FNOC the flexi-

bility and latitude to apply tailored versions of the

standard. This way FNOC personnel maintain a relatively

comfortable level of assurance that the standard was appro-

priately being applied to the majority of the projects in

each category. In addition, the command would still be

receiving the benefits one should from the tailoring process

as it was intended. That is to say, FNOC would be deleting

non-applicable and/or redundant, superfluous requirements

and activities in an effort to ensure cost-effective

development efforts and contracts.

1. Criteria for Categorizing

a. General Guidance

1) The category chosen should be the highest one
with any applicable criterion.

2) Lines of code are undocumented source c-de
including commonly used subroutines.

3) When in doubt, start with the "Major" category
and work down, deleting requirements as
applicable.

b. Major Category

1) Greater than 20,000 lines of code.

2) Language other than standard FORTRAN.

3) Significant interfaces to other systems.

4) Significant risk or security implications.

5) Significant data base usage

6) Multiple users/many functional areas of the
software.

19

7) Complex requirements including science,
communications, system software, and/or
complex data manipulation.

8) May, on occasion, require additional hardware/
firmware.

c. Intermediate Category--Criteria for an "Intermedi-
ate category, by sheer definition, should fit
somewhere between that for "Major" and "Minor"
categories. Applicable criteria for this category
could be:

1) Greater than 2000 and less than 20,000 lines
of code.

2) High-level language that is familiar to the
programmer and requires a low learning curve
for programming proficiency.

3) Few interfaces that are well understood.

4) Few and well understood security requirements.

5) Multiple users/same functional area of the
software.

6) May require well understood modifications to
hardware/firmware.

However, much difficulty was experienced in
utilizing this criterion with "Tailor" to produce
an applicable set of required deliverables (DIDs).
A discussion pertaining to this category of soft-
ware projects and its respective version of the
standard can be found in Appendix B.

d. Minor Category

1) Less than 2000 lines of code.

2) Standard FORTRAN or comparable language with
minimal-to-no extensions required.

3) No interfaces to other systems (stand alone).

4) No significant data base usage.

5) No significant risk involved including no
security imp3 ications.

6) One single user of the software.

20

7) One person assigned to the job.

8) Involves no hardware or firmware changes.

Note: Some of the individual criterion values, within
their respective categories, may be different than
those used by Barry Boehm as FNOC is establishing
and/or using values to meet organizational needs
and standards.

Subsequent to the determination of appropriate

categories and their respective criteria, several sessions

between the author and the FNOC Software Coordinator/ADP

Manager were held to tailor the standard to each of the

corresponding categories. It was felt that Logicon's

Automated Tailoring Software Package was appropriate and

adequate enough to tailor the requirements of the standard

to such general categories. (Manual tailoring of the

applicable DIDs, reviews, and audits for each category still

needed to be performed.) Project description answers,

tailor selections, statement of work reports, detail status

reports, and action item lists were produced and placed in

Appendices A, B, and C for Major, Intermediate, and Minor

projects respectively. Appropriately selected DIDs, reviews

and audits, depending on the responses given while tailoring

the standard, were tailored manually and also placed in

corresponding appendices.

21

D. REFERENCE DOCUMENTS: RELATIONSHIP OF DOD-STD-2167A TO

OTHER STANDARDS

DOD-STD-2167A is part of an overall family of defense

system acquisition standards. In fact, DOD-STD-2167A

invokes or imposes other standards. These standards are:

1. DOD-STD-480A: Configuration Control--engineering
changes, deviations, and waivers, dated April 1978.

2. MIL-STD-481: Configuration Control--engineering
changes, deviations, and waivers (short form), dated
18 October 1972.

3. MIL-STD-490A: Specification practices, dated 4 June
1985.

4. MIL-STD-499A: Engineering Management, dated 1 May
1974.

5. MIL-STD-1521: Technical Reviews and Audits for
systems, equipments, and computer software, dated 4
June 1985.

This referencing of other standards is permitted by

Department of Defense Directive (DODD) 5000.43. Unless the

invoking requirements (paragraphs) are tailored out of DOD-

STD-2167A, the referenced standards are automatically on

contract to the extent specified in DOD-STD-2167A. If no

additional requirements from these standards are to be

imposed, the standards need not be called out separately in

the contract. However, when references to other standards

are left in DOD-STD-2167A, the referenced standards should

be reviewed. All incompatibilities must be resolved to have

a correct, consistent Statement of Work (SOW) (MIL-HDBK-287,

1989, pp. 9-10). In the event of a conflict between the

22

text of DOD-STD-2167A and a reference, the text of DOD-STD-

2167A shall take precedence (DOD-STD-2167A, 1988, pp. 3/4).

Institute of Electrical and Electronic Engineers (IEEE)

standards were also reviewed in the areas of Configuration

Management, Software Maintenance, and Quality Assurance. A

discussion of subsequent findings and relationships of these

standards to the DOD-STD-2167A and software development, in

general, can be found in appropriate sections and/or appen-

dices of this thesis.

1. DOD-STD-480A and MIL-STD-481A

DOD-STD-2167A paragraph 4.5.5, General Requirements,

requires the contractor or developing agency to prepare

Engineering Change Proposals, or an abbreviated form thereof

(MIL-STD-481A), in accordance with DOD-STD-480A, if and as

specified in the contract. Both DOD-STD-480A and MIL-STD-

481A delineate configuration control requirements and

provide instructions for preparing and submitting proposed

engineering changes, deviations and waivers, and related

information. An engineering change is an alteration of a

configuration item or item, delivered, to be delivered, or

under development, after formal establishment of its

configuration identification. A deviation is a specific

written authorization, granted prior to the manufacture of

an item, to depart from a particular performance or design

requirement of a specification, drawing or other document

for a specific number of units or a specific period of time.

23

An approved engineering change requires corresponding

revision of the documentation defining the affected item. A

deviation does not require revision of the applicable

specification or drawing. A waiver, on the other hand, is a

written authorization to accept a configuration item or

other designated items that departs from the specified

requirements, but nevertheless is considered suitable for

use "as is" or after rework by an approved method.

Of the two standards, DOD-STD-480A covers the

broader area and requires a more complete analysis of the

impact if the engineering change described by an Engineering

Change Proposal (ECP) were implemented. DOD-STD-480A

requires that the data package submitted with an ECP contain

a description of all known interface effects and information

concerning changes required in the Functional/Allocated/

Product Configuration Identification (FCI/ACI/PCI). A

configuration identification is the current approved or

conditionally approved technical documentation for a config-

uration item as set forth in specifications, drawings, and

associated lists, and documents referenced therein. (DOD-

STD-480A, 1978, p. iii)

MIL-STD-481A is intended for use in contracts/

development efforts involving detailed design of the system

at hand but was not developed by the present contractor/

developer. MIL-STD-481A sets forth the requirements for

preparation and submittal of an abbreviated engineering

24

proposal. Required information emphasizes the impact on the

item under contract with limited description of the effect

on interfaces and integrated logistic support (MIL-STD-481A,

1972, p. ii). In this case, the burden and responsibility

for analyzis of the impact of an ECP on associated items

falls on the contracting/procuring activity vice the

contractor.

Both standards delineate situations for imposing

standards on prime contractors. They also specify when to

utilize an ECP, deviation or waiver. Definition of ECP

classes and associated criteria, justification codes, and

priorities are also documented. These standards are

primarily designed to meet acquisition needs/requirements of

hardware and/or other major "physical" systems (equipments)

and show the relationship between the program phases and the

ECP data required at each phase of the procurement/acquisi-

tion Life Cycle. A major portion of the standard is devoted

to block by block instructions for the preparation of ECPs,

deviations and waivers utilizing military (DD) forms and to

the associated review and approval process that accompanies

these proposals. Although designed for "hardware," they may

also be applied to CSCIs, to the extent that these standards

will be used to prepare ECPs, deviations, and waivers in

relation to CSCIs and paragraph 4.5.1 nf DOD-STD-2167A. The

exact documentation that establishes the functional, allo-

cated, and developmental configuration of any specific CSCI

25

are delineated by paragraph 5.x.5 of DOD-STD-2167A for each

of the software development activities in the Life Cycle.

DOD-STD-480A and MIL-STD-481A can be tailored, but are

dependent on an individual project's functional and product

specifics, and therefore cannot be appropriately applied to

FNOC's general categories of software projects. However,

when applied to specific, individual projects, no incompati-

bilities, duplication, or conflicts will be created if DOD-

STD-480A or MIL-STD-481A is selected (MIL-HDBK-287, 1989, p.

113).

2. MIL-STD-490A

MIL-STD-490A establishes and sets forth uniform

practices for the preparation, interpretation, change, and

revision of program peculiar specifications to ensure the

inclusion of essential requirements, and to aid in the use

and analysis of specification content (MIL-STD-490A, 1985,

pp. iii/iv). It is related to DOD-STD-2167A to the extent

that DOD-STD-2167A paragraph 4.5.5, General Requirements,

requires the contractor or developing agency to prepare

Specification Change Notices (SCNs) in accordance with MIL-

STD-490A. A Specification Change Notice is a document used

to propose, transmit, and record changes to a specification

utilizing DD Form 1696 and in accordance with paragraph

3.3.2.1 of MIL-STD-491A. In this capacity, no duplications

or conflicts would be created if MIL-STD-490A is invoked.

26

Section Six of the standard contains a list of DIDs

applicable to the standard. These DIDs cross-reference DOD-

STD-2167A. Some DIDs have changed titles and others have

been consolidated to form a single DID in DOD-STD-2167A.

MIL-STD-490A paragraph references are in parentheses:

1. System/Segment Specification, DI-CMAN-80008A
(3.1.3.1).

2. Software Requirements Specification, DI-MCCR-80025A
(3.1.3.2.5.1).

3. Interface Requirements Specification, DI-MCCR-80026A
(3.1.3.3.5).

4. Software Product Specification, DI-MCCR-80029A
(3.1.3.3.5.1).

5. Software Top Level Design Document, DI-MCCR-80012A
(3.1.3.3.5.1).

6. Software Detailed Design Document, DI-MCCR-80031
(3.1.3.3.5.1, 3.1.3.3.5.1).

7. Interface Design Document, DI-MCCR-80027A

(3.1.3.3.5.4).

8. Data Base Design Document, DI-MCCR-80028
(3.1.3.3.5.3).

The Software Top Level Design Document has been renamed the

Software Design Document in DOD-STD-2167A, maintaining the

same DID number. The Software Detailed Design Document and

Data Base Design Document have been eliminated from DOD-STD-

2167A and have been incorporated into the Software Design

Document, DI-MCCR-80012A. These eight DIDs, listed above,

are defined in the MIL-STD-490A, but their format and

content preparation are required to be developed as speci-

fied by the approved Data Item Description (DD Form 1664).

27

Delivery should be in accordance with the approved CDRL (DD

Form 1423) incorporated into the contract as specified in

the DOD-STD-2167A.

The extent of the relationship between MIL-STD-490A

and DOD-STD-2167A is in the area of SCNs, which is only a

small part of MIL-STD-490A. Actual determination and

preparation of hardware and software specifications (utliz-

ing MIL-STD-490A) for individual projects is not in the

scope of this thesis and must be the decision of FNOC

personnel. However, it should be noted, if provisions of

MIL-STD-490A beyond SCN preparation are invoked, one should

make allowances for: (1) its non-current DID reference for

System/Segment Specification, and (2) its citing of DOD-STD-

2167 rather than DOD-STD-2167A software requirement and

design documents (as previously addressed above) (MIL-HDBK-

287, 1989, p. 113).

3. MIL-STD-499A

MIL-STD-499A was developed to assist government and

contractor personnel in defining the system engineering

effort in support of defense acquisition programs. The

fundamental concept of the standard is to present a single

set of criteria against which contractors/government

agencies may propose their individual internal procedures as

a means of satisfying the engineering requirements of the

particular system under development. It specifies and

prepares requirements for systems engineering for inclusion

28

in solicitation documents, contract work statements, and

System Engineering Management Plans (SEMP). A SEMP is a

comprehensive and complete entity within a contractor's

proposal which describes how a fully integrated engineering

effort will be managed and conducted. It consists of three

parts: (1) technical program planning and control, (2)

system engineering process, and (3) engineering specialty

integration. (MIL-STD-499A, 1974, pp. ii,l)

The extent to which this standard is related to DOD-

STD-2167A is cited in paragraph 1.2.1 of DOD-STD-2167A and

delineates that DOD-STD-2167A should be used in conjunction

with MIL-STD-499A when in the "total system" development

context. ("Total system" includes hardware/firmware speci-

fications and integration in addition to software develop-

ment.) Other broad relationships exist, but are applicable

to the "systems" level vice software development level.

Technical, system level reviews are to be conducted in

accordance with MIL-STD-1521B and identified in the SEMP.

Configuration control change requirements (ECPs) and

"system" configuration specifications for program-peculiar

items are to be generated and prepared in accordance with

DOD-STD-480A and MIL-STD-499A respectively. If software

development does, however, take place in the context of

"total system" development, no overlaps or conflicts will

exist between MIL-STD-499A and DOD-STD-2167A.

29

4. MIL-STD-1521B

MIL-STD-1521B specifies requirements for scheduling

and conducting reviews and audits on systems, equipment, and

computer software. It delineates such requirements as

location of reviews and audits, contractor requirements, and

contracting agency participation responsibilities. With

regard to DOD-STD-2167A, paragraphs 5.2.1, 5.3.1, 5.4.1 and

5.6.1 require the contractor to conduct Software Specifica-

tion Reviews, Preliminary Design Reviews, Critical Design

Reviews, and Test Readiness Reviews respectively.

The contracting agency shall tailor MIL-STD-1521B to

require only what is needed for each individual acquisition

(MIL-STD-1521B, 1985, p. 1/2). This ensures the cost

effective application of the requirements of the standard

when it is contractually invoked. Tailoring eliminates

inapplicable and unnecessary requirements, provides for

adding/modifying necessary technical review and audit

factors not included in MIL-STD-1521B, and eliminates redun-

dancy and inconsistency with other contract specifications

and standards. MIL-STD-1521B is not a stand alone document

and is dependent upon the work effort specified in the SOW.

Tailoring of specifications should take place in all phases

of military procurement, but is especially applicable to the

initial stages of solicitation package preparation and

contract negotiation. Depending upon the type of end-

item(s) under procurement, the reviews and audits outlined

30

by MIL-STD-1521B may or may not be required for all

programs. (MIL-STD-1521B, 1985, p. 117)

The update of MIL-STD-1521A in June 1985 provided

compatibility with DOD-STD-2167, but no comparable revision

has been undertaken to achieve consistency with DOD-STD-

2167A. The documents cited for each review/audit are incom-

patible with those required by DOD-STD-2167A. Unless MIL-

STD-1521B is tailored out of DOD-STD-2167A, the contractor

and/or contracting agency needs to tailor MIL-STD-1521B to

resolve the inconsistencies. (MIL-HDBK-287, 1989, p. 113)

Guidelines for tailoring MIL-STD-1521B can be found in

Appendix J of the standard and Appendix B of MIL-HDBK-287.

Tailoring results of the MIL-STD-1521B in relation to FNOC's

software project categories will be found in Appendices A,

B, and C for Major, Intermediate, and Minor projects

respectively.

5. MIL-STD-483A

MIL-STD-483A specifies and sets forth configuration

management practices for hardware and software. It is

designed to be tailored to specific programs and imple-

mented by the SOW. The standard also establishes and

supplements configuration management and control require-

ments which are not covered in DOD-STD-480A, MIL-STD-481A,

MIL-STD-482, and MIL-STD-490A. (MIL-STD-483A, 1985, pp.

iii/iv). This standard is not invoked or referenced by DOD-

STD-2167A. DOD-STD-2167A paragraphs 4.5, General

31

Requirements, and 5.x.5, Detailed Requirements, specify

requirements for the delivery of specific deliverables/

documents (DIDs) at the completion of each software develop-

ment activity in the Life Cycle. These paragraphs are

considered to be adequate and self-sufficient. (MIL-HDBK-

287, 1989, p. 114)

Section six of MIL-STD-483A contains a list of DIDs

applicable to the standard. These DIDs cross-reference DOD-

STD-2167A. Some DIDs have changed titles and others have

consolidated to form a single DID in DOD-STD-2167A. MIL-

STD-483A paragraph references are in parentheses:

1. Software Development Plan, DI-MCCR-80030A (3.1.1).

2. Software Configuration Management Plan, DI-MCCR-80009
(3.1.1).

3. Version Description Document, DI-MCCR-80013A (80.5.4).

4. Software Requirements Specification, DI-MCCR-80025A
(3.4.2, 3.4.7.1).

5. Interface Requirements Specification, DI-MCCR-80026A
(3.4.2, 3.4.7.1).

6. Software Product Specification, DI-MCCR-80029A
(3.4.7.3).

7. Software Top Level Design Document, DI-MCCR-80031
(3.4.7.2).

8. Software Detailed Design Document, DI-MCCR-80031

(3.4.7.2).

9. Interface Design Document, DI-MCCR-80027A (3.4.7.2).

10. Data Base Design Document, DI-MCCR-80028 (3.4.7.2).

The Software Configuration Management Plan and the Software

Detailed Design Document have been eliminated from

32

DOD-STD-2167A as separate deliverables und have been

incorporated into the Software Develcpment Plan, DI-MCCR-

80030A, and Software Design Document, DI-MCCR-80012A

respectively. The reference to the Software Top Level

Design Document in MIL-STD-483A is now the Software Design

Document in DOD-STD-2167A. The DID nu.nber and contents are

the same, only the name changed. The Data Base Design

Document has also been eliminated from DOD-STD-2167A and has

been incorporated into the Software Design Document.

Although definitions for those DIDs listed above are

contained in MIL-STD-483A, their format and content

preparation are required to be developed as specified by the

approved Data Item Description (DD Form 1664) and delivered

in accordance with the approved CDRL (DD Form 1423)

incorporated into the contract as specified in DOD-STD-

2167A.

There are other areas of MIL-STD-483A that are

related specifically to DOD-STD-2167A and software develop-

ment. Appendix III concerns the System Specification/System

Segment -pecification and has been replaced by a System/

Segment Specification, DI-CMAN-80008A in DOD-STD-2167A.

Likewise, Appendix VI, Computer Software Configuration Item

Specification has been divided and replaced by Software

Requirements Specification, DI-MCCR-80025A, and Interface

Requirements Specification, DI-MCCR-80026A, DIDs in

33

DOD-STD-2167A. Appendix XII on configuration audits has

been replaced by MIL-STD-1521B, Appendices G, H, and I.

MIL-STD-483A is a totally complete and comprehensive

document on configuration management for system development

of any type. Configuration management is an extremely

critical and viable aspect of software, as well as system,

development. Configuration nanagement is a discioline

applying technical and administrative direction to identify

and document the functional and physical characteristics of

a configuration item, control changes to those characteris-

tics, and record and report change processing and implemen-

tation status. Configuration management is the means

through which integrity and continuity of a design are

recorded, communicated, and controlled by program and func-

tional managers. (MIL-STD-483A, 185, p. 5) MIL-STD-483A

covers interface control as well as specification and

support documentation maintenance. It provides supplemental

information to DOD-STD-480A and MIL-STD-490A on formatting

and the preparation of ECPs and SCNs respectively. MIL-STD-

483A is a document so integrated and comprehensive that an

organization and/or ccntract invoking it will want to

identify all appropriate paragraphs and appendices, or

portions thereof, in the SOW applicable to the nature and

scope of the specific program/project.

Although DOD-STD-2167A's coverage of configuration

management is stipulated to be self-sufficient, FNOC

34

personnel should consider utilizing MIL-STD-483A in the

development of any comprehensive organizational configura-

tion management plan. A complete analysis, evaluation, and

implementation of the standard, with respect to FNOC's

specific configuration management requirements, is beyond

the proposed scope of this research effort. However, since

configuration management is considered a key part of the

FNOC Software Improvement Program (SIP), an in-depth

analysis of whether to utilize MIL-STD-483A as the means to

a viable command configuration management plan might be

performed at this level.

Worthy of note here is the value of the ANSI/IEEE

STD 828-1983, Standard for Software Configuration ManaQement

Plans and IEEE P1042/D5.0, Guide to Software Configuration

Management, in establishing a configuration management

strategy for the command. STD 828-1983 provides an outline

for documenting a Software Configuration Management Plan

(SCMP). The "Guide" discusses SCM as a set of management

disciplines within the context of a software engineering

process rather than as a set of specific activities to be

performed or as functions of an organization. It focuses on

the planning aspect of SCM vice implementation. The "Guide"

is divided into two parts. The first part is a discussion

of issues to consider when planning SCM for a project or

organization. The second part presents a series (Appen-

dices) of sample plans illustrating different concepts and

35

considerations in SCMPs for different types of projects and

organizations. The issues discussed in the body of the

"Guide" concentrate on areas such as the process of develop-

ing a baseline, relating the elements of the SCMP to

specific activities of the project's or organization's

management organization, SCM activities and responsibili-

ties, supplier and sub-contractor relationships, and records

collection and retention. A major portion of text discusses

interface control and the use of a Configuration Control

Board (CCB). A CCB reviews proposed changes for assuring

compliance with approved specifications and designs, and

evaluates impacts on existing software. Each engineering

change or problem report which is initiated against a

formally identified configuration item is evaluated by the

CCB to determine its necessity and impact. Therefore, given

the proper level of authority a CCB can grant change

approval. No organization should implement a SCMP without

first reviewing these two documents for potential insight,

impact, and alternatives that could enhance an organiza-

tion's SCMP.

6. DOD-STD-2168

DOD-STD-2168 specifies requirements for a software

quality program and supplements the DOD-STD-2167A require-

ments for software product evaluations. DOD-STD-2168

requires evaluation of software products and activities for

compliance with the contract and adherence to software

36

, , i ! I !

planning documents. No duplication or conflicts will be

created if DOD-STD-2168 is selected. (MIL-HDBK-287, 1989,

p. 114) A more detailed discussion of DOUD-STD-2168 and

software quality assurance will take place later in Appendix

E of the thesis.

7. Other References

There are several other references related to DOD-

STD-2167A, but are neither invoked nor referenced by it.

Their frequency of use, for FNOC requirements, is expected

to be minimal and only when project situations and circum-

stances warrant invoking them. They are mentioned here only

as a cursory note and reminder to the reader of their

existence.

a. MIL-STD-482

This standard specifies requirements for prepar-

ing and maintaining configuration status accounting records.

Paragraph 4.5.3 of DOD-STD-2167A briefly discusses general

requirements for configuration status accounting records if

required to be kept. The paragraph is meant to be self-

sufficient, but is not in conflict with MIL-STD-482 if both

standards are put on contract (MIL-HDBK-287, 1989, p. 114).

b. MIL-STD-882

This standard specifies requirements for

Software System Safety Analysis. When warranted by the

nature/environment of a specific project, performance of

Software Safety Analysis is required by DOD-STD-2167A,

37

paragraph 4.2.3, and tailored versions of MIL-STD-882 may be

used to define the type of Software Safety Analysis that

needs to be performed.

C. MIL-STD-1535

MIL-STD-1535 specifies requirements of prime

contractors in the development of quality assurance programs

where subcontractors are concerned. DOD-STD-2167A paragraph

4.1.6 delineates general requirements in subcontractor

management. MIL-STD-1535 describes the process required of

the prime contractor for evaluation of the subcontractor's

products. It is focused on hardware rather than software

(MIL-HDBK-287, 1989, p. 114).

38

III. SUMMARY/RECOMMENDATIONS

DOD-STD-2167A establishes a comprehensive, uniform set

of requirements for software development. The standard

affords the government control over the developer's/contrac-

tor's development, testing and evaluation efforts. It

provides a means for ensuring required levels of quality in

software and associated documentation. DOD-STD-2167A is

divided into six functional areas with eight detailed

requirements/software development activities contained

within each one. The framework is meant to allow tailoring

to meet specific project requirements. Functional areas are

grouped so that they can be tailored consistently.

Although the standard is fairly comprehensive and seems

to place rigorous controls on the entire development

process, it does allow a great deal of developer/contractor

flexibility in meeting contract requirements. DOD-STD-2167A

provides a broad framework of software development, leaving

application specific details to the discretion of the

developer. The standard is designed to be compatible with

any software development model. It specifically avoids

terminology which might suggest sequential development and

instead specifies, in paragraph 4.1.1, that software

development activities "may overlap and may be applied iter-

atively or recursively." The specific plans for conducting

39

these activities are proposed and documented in the Software

Development Plan.

DOD-STD-2167A shows flexibility in its requirements for

the use of a specific software development methodology or

programming language. It is designed to be compatible with

any software development methodology or any programming

language. The standard supports no default methodology and

states in the foreword that "the standard is not intended to

specify or discourage the use of any particular software

development method." The only constraint on the use of any

software development method is in paragraph 4.2.1 which

states that the contractor must use a systematic, well-

documented software development method that supports the

reviews and audits required by the contract.

The intent and design of DOD-STD-2167A is geared to meet

the needs and requirements of a specific software project/

development effort. Subsequent tailoring of the standard's

requirements, and their associated DIDs, is also in keeping

with this premise. However, a major theory behind this

research effort was that there must be some version of the

standard that could be tailored and applied to an entire

organization's software requirements, or if not to the

organization as a whole, maybe to a subset or category of

the organization's software projects. As a result, some

interesting findings and possible benefits were unveiled.

40

First of all, it is felt that no tailored version of the

standard would meet the requirements of or apply to all

projects within FNOC. The numbers and types of software

development efforts, and their respective characteristics

and requirements, are so varied that they don't lend them-

selves to a single tailored version of the standard that

would be practical or beneficial. However, dividing

development efforts into project categories appropriate to

the organization does produce some useful results. Tailor-

ing the standard according to selective criteria of a

project category resulted in "skeletonized" versions of the

standard and its DIDs. These "skeletonized" versions

provide a project manager with a starting/reference point by

automatically deleting those requirements and activities

that would most likely never be needed by a project within

that respective category. However, it should be noted that

these versions are only tailored to a "category" of projects

and that in order to produce a truly cost-effective and

complete SOW, one must further refine/tailor the standard

for a specific project's requirements.

Software development efforts at FNOC were divided into

categories of "Major," "Intermediate," and "Minor." The

criteria selected for "Major" and "Minor" categories

produced distinct software project categories and conse-

quently resulted in separate tailored versions of the

standard. The major difference between them was in the

41

number and types of activities performed, and in the number

of DIDs required to be delivered. The contents of the indi-

vidual DIDs that were common to both remained very similar

with only minor deletions occurring in their references to

hardware/firmware specifications and safety analysis (see

Appendices A and C).

The "Intermediate" category proved more difficult with a

quantitatively weaker set of criteria forthcoming (at least

to the level necessary to utilize the "Tailor" software

package and produce a list of required deliverables applica-

ble to the category). The questions used by the "Tailor"

process were much more difficult to answer for "Intermedi-

ate" category projects. Therefore, it was determined that

the only viable method to tailor the standard to a project

in this category was to start with the tailored version for

a "Major" project and work down deleting requirements as

applicable (see Appendix B).

It should also be noted that "tailoring" should not be

confined to the deletion of non-applicable requirements.

The tailoring process can also include the addition of

requirements and/or activities as appropriate to fulfill the

needs of specific projects, regardless of the category to

which they belong. The focus of this thesis dealt only with

the deletion of requirements not applicable to general

project category criteria. Any addition of requirements

and/or activities would have to be considered and determined

42

on a case by case basis dependent on individual project

needs and requirements.

With the passage of time and increased experience, FNOC

personnel should become more adept in the use and tailoring

of DOD-STD-2167A and its associated DIDs. As their

knowledge and use of DOD-STD-2167A matures, it will become

more widely distributed and accepted as a beneficial and

practical standard. Training sessions should be planned and

scheduled to expose personnel to the standard's terminology,

contents, requirements, theory and steps involved in

tailoring the standard, both manually and by utilizing the

automated "Tailor" software package. FNOC should also look

into the feasibility of setting up a "library" of tailored

versions of the standard used in past development efforts.

Once established, project managers could refer to this

collection of already tailored standards and possibly find a

version that closely matches the requifikents of his/her

present project. This provides the project manager with an

immediately better reference point from which to begin

tailoring. This should allow for only minor adjustments to

be made before it is usable by a project under

consideration.

43

APPENDIX A

MAJOR PROJECTS

This appendix represents the tailored version of DOD-

STD-2167A for a FNOC "Major" project. It is basically

divided into two parts. The first part represents the

tailored DOD-STD-2167A standards requirements utilizing the

automated tailoring software package "Tailor" and contains

five reports:

1. Project Description Answers.

2. Quick-Tailor Selections.

3. Statement of Work Report.

4. Detailed Status Report.

5. Action Item List.

The second part contains the tailored set of DIDs and

reviews and audits (MIL-STD-1521B) appropriate to this set

of tailored standards requirements and applicable to a

"Major" project. It should, however, be noted that this

tailored version represents only a skeletonized package

applicable to a general category of software projects and

must be further tailored/refined to meet the individual

requirements of a specific project within this category. Of

particular note are items 23 through 32 of the ,.ction Item

List Report. These items (shell requirements), regardless

of the fact that we have now moved to categories of software

44

projects, still remain project dependent/specific and must

be specifically stated in a contract/development plan and

dealt with during the refinement process for that particular

project.

NOTE: The System/Segment Specification and the System/Seg-

ment Design Document are included in a "Major" project to

ensure maximum coverage. Likewise, the System Requirements

Review and the System Design Review are also included. They

are only required if hardware is involved in the development

effort. However, if the development effort only involves

software then these products, reviews, and all reference to

them should be tailored out for that specific project. It

should also be noted that most of DOD-STD-2167A and its

associated DIDs are applicable to a "Major" project. There-

fore, this tailored version of the standard and the DIDs

consists of those items that are non-applicable and should

be eliminated because of "Major" project characteristics.

In addition, if the development effort includes hardware

and/or firmware then disregard those tailoring decisions

that delete reference to hardware and/or firmware. This

tailored version of the standard assumes that they are not a

part of the development effort.

45

TAILOR REPORT
PROJECT DESCRIPTION ANSWERS
PROJECT: MAJOR

SCREEN 1. ACTIVITIES OVERVIEW

YES 1. Help define system-level requirements and design
YES 2. Define software requirements
YES 3. Design the software
YES 4. Code the software
YES 5. Perform unit/component testing
YES 6. Perform formal qualification testing
YES 7. Support system-level testing
YES 8. Perform product evaluations
YES 9. Perform configuration management
YES 10. Prepare for software use and support
YES 11. Install software at the support site
YES 12. Conduct/support formal reviews and audits

SCREEN 2. PROJECT CHARACTERISTICS

YES 1. There may be subcontractors
YES 2. There are security issues on this project
NO 3. Some or all of the software will be implemented

in firmware
YES 4. The software will have user interfaces
YES 5. The contract will specify reserve memory/timing

capacities
YES 6. There will be an IV&V agent
YES 7. Contractor will be responsible for CSCI-external

interfaces
YES 8. Software errors could threaten personnel or

property safety
YES 9. The software will run on computers with commer-

cial/GFE manuals
YES 10. There are significant risks to project success

SCREEN 3. SOFTWARE DEVELOPMENT PRACTICES

YES 1. Require 2167A project management practices
YES 2. Require 2167A software engineering practices
YES 3. Require 2167A formal qualification testing

practices
YES 4. Require 2167A software product evaluation

practices
YES 5. Require 2167A configuration management practices

46

TAILOR REPORT
QUICK-TAILOR SELECTIONS
PROJECT: MAJOR

SCREEN 1. PRODUCTS TO BE DEVELOPED

YES 1. Source code
YES 2. Software Development Plan (SDP)
YES 3. System/Segment Design Document (SSDD)
YES 4. Software Requirements Specification (SRS)
YES 5. Interface Requirements Specification (IRS)
YES 6. Software Design Document (SDD)
YES 7. Interface Design Document (IDD)
YES 8. Software Product Specification (SPS)
YES 9. Software Test Plan (STP)
YES 10. Software Test Description (STD)
YES 11. Software Test Report (STR)
YES 12. Computer Resources Integrated Support Document

(CRISD)
YES 13. Computer System Operator's Manual (CSOM)
YES 14. Software User's Manual (SUM)
NO 15. Software Programmer's Manual (SPM)
NO 16. Firmware Support Manual (FSM)

YES 17. Version Description Document (VDD)

SCREEN 2. REVIEWS AND AUDITS

YES 1. System Requirements Review (SRR)
YES 2. System Design Review (SDR)
YES 3. Software Specification Review (SSR)
YES 4. Preliminary Design Review (PDR)
YES 5. Critical Design Review (CDR)
YES 6. Test Readiness Review (TRR)
YES 7. Functional and Physical Configuration Audits

(FCA, PCA)

SCREEN 3. PROJECT MANAGEMENT REQUIREMENTS

YES 1. Ensure subcontractor compliance with prime
contract

YES 2. Implement a corrective action process
YES 3. Prepare problem/change reports
YES 4. Internally coordinate products before delivery
YES 5. Implement risk management procedures
YES 6. Interface with the software IV&V agent
YES 7. Establish a software development library
YES 8. Implement security measures as specified in the

contract

47

QUIK-TAILOR SELECTIONS (Continued)

SCREEN 4. SOFTWARE ENGINEERING PRACTICES

YES 1. Use systematic, documented development methods
YES 2. Establish a software engineering environment
YES 3. Analyze the system specification
NO 4. Perform safety analysis on requirements, design,

and procedures
YES 5. Consider the use of non-developmental software
YES 6. Monitor and maintain required reserve processing

capacity
YES 7. Organize CSCIs into CSCs, CSUs
YES 8. Establish software development files for CSCIs,

CSCs, CSUs
YES 9. Document and implement design and coding

standards
YES 10. Use the approved HOL or obtain approval to use

another

SCREEN 5. REQUIREMENTS FOR CONTRACTOR-
INTERTTAL TESTING

YES 1. Develop and document CSU test requirements,
cases, and procedures

YES 2. Perform CSU testing; record results
YES 3. Develop and document CSC test requirements,

cases, and procedures
YES 4. Perform CSC integration and testing; record

results

SCREEN 6. REQUIREMENTS FOR FORMAL QUALIFICA-
TION TESTING

YES 1. Establish a software test environment
YES 2. Dry run FQT procedures
YES 3. Perform FQT on the target computer
YES 4. Use test personnel independent of software

engineers

SCREEN 7. REQUIREMENTS FOR SYSTEM INTEGRATION
AND TESTING

YES 1. Support the development of system test plans and
procedures

YES 2. Support system integration and testing
YES 3. Support post-test analysis and test reporting

48

QUICK-TAILOR SELECTIONS (continued)

SCREEN 8. PREPARATIONS FOR SOFTWARE SUPPORT

YES 1. Produce code regenerable and maintainable on a
designated system

YES 2. Install the code in the support environment
YES 3. Provide training and continuing support

SCREEN 9. PRODUCT EVALUATIONS

YES 1. Source code
YES 2. Software Development Plan
NO 3. System/Segment Design Document

YES 4. Software Requirements Specification
YES 5. Interface Requirements Specification
YES 6. Software Design Document
YES 7. Interface Design Document
YES 8. Software Test Pian
YES 9. Software Test Description
YES 10. Software Test Report
YES 11. CSU test requirements, cases, procedures, results
YES 12. CSC test requirements, cases, procedures, results
YES 13. Sample of software development files
YES 14. Keep records of evaluations
YES 15. Use evaluation criteria in the standard
YES 16. Require evaluators to be independent of s/w

engineers

SCREEN 10. CONFIGURATION MANAGEMENT
REQUIREMENTS

YES 1. Perform configuration identification
YES 2. Perform configuration control
YES 3. Perform configuration status accounting
YES 4. Implement procedures for storage, handling, and

delivery
YES 5. Prepare ECPs and SCNs IAW DOD-STD-480, MIL-STD-

481, MIL-STD-490

49

TAILOR REPORT
STATEMENT OF WORK REPORT
PROJECT: MAJOR

The contractor shall comply with all requirements in DOD-

STD-2167A, with the following exceptions:

4.2.3 Delete entire paragraph.

4.6.4.d Delete entire paragraph.

4.6.4.e Delete entire paragraph.

5.1.4.b Delete entire paragraph.

END OF STATEMENT OF WORK REPORT

50

TAILOR REPORT
DETAILED STATUS REPORT
PROJECT: MAJOR

Para. Status Title/Description

4. K General Requirements
4.1 K Software development management
4.1.1 K Software development process
4.1.l.a K (System Requirements Analysis/Design)
4.1.l.b K (Software Requirements Analysis)
4.1.1.c K (Preliminary Design)
4.1.l.d K (Detailed Design)
4.1.1.e K (Coding and CSU Testing)
4.1.l.f K (CSC Integration and Testing)
4.1.l.g K (CSCI Testing)
4.1.l.h K (System Integration and Testing)
4.1.2 K Formal reviews/audits
4.1.3 K Software development planning
4.1.4 K Risk management
4.1.5 K Security
4.1.6 K Subcontractor management
4.1.7 K Interface with software IV&V agent(s)
4.1.8 K Software development library
4.1.9 K Corrective action process
4.1.9.a K (Implement a closed-loop process)
4.1.9.b K (Provide inputs to corrective action process)
4.1.9.c K (Classify problems by category and priority)
4.1.9.d K (Perform trend analysis)
4.1.9.e K (Evaluate corrective action taken)
4.1.10 K Problem/change report
4.2 K Software engineering
4.2.1 K Software development methods
4.2.2 K Software engineering environment
4.2.3 D Safety analysis
4.2.4 K Non-developmental software
4.2.5 K Computer software organization
4.2.6 K Traceability of requirements to design
4.2.7 K High order language
4.2.8 K Design and coding standards
4.2.9 K Software development files
4.2.9.a K (Software development file contents)
4.2.9.b K (Software development file contents)
4.2.9.c K (Software development file contents)
4.2.9.d K (Software development file contents)
4.2.9.e K (Software development file contents)
4.2.10 K Processing resource and reserve capacity
4.3 K Formal qualification testing
4.3.1 K Formal qualification test planning
4.3.2 K Software test environment
4.3.3 K Independence in FQT activities

51

DETAILED STATUS REPORT (continued)

4.3.4 K Traceability of requirements to test cases
4.4 K Software product evaluations
4.4.1 K Independence in product evaluation activities
4.4.2 K Final evaluations
4.4.3 K Software evaluation records
4.4.4 K Evaluation criteria
4.5 K Software configuration management
4.5.1 K Configuration identification
4.5.1.a K (Identify baseline documentation)
4.5.1.b K (Identify documentation and media under CM)
4.5.1.c K (Identify each CSCI, CSC, and CSU)
4.5.1.d K (Identify version, release, and change status)
4.5.1.e K (Identify code/documentation relationship)
4.5.1.f K (Identify deliverable medium contents)
4.5.2 K Configuration control
4.5.2.a K (Establish Developmental Configuration(s))
4.5.2.b K (Maintain current copies of deliverables)
4.5.2.c K (Provide access to documents and code under CM)
4.5.2.d K (Control change to master copy of deliverables
4.5.3 K Configuration status accounting
4.5.3.a K (Provide traceability of changes)
4.5.3.b K (Communicate configuration status)
4.5.3.c K (Ensure consistency between documents and code)
4.5.4 K Storage, handling, and delivery of media
4.5.5 K Engineering Change Proposals
4.6 K Transitioning to software support
4.6.1 K Regenerable and maintainable code
4.6.2 K Transition planning
4.6.3 K Software transition and continuing support
4.6.4 K Software support and operational documentation
4.6.4.a K (CRISD)
4.6.4.b K (CSOM)
4.6.4.c K (SUM)
4.6.4.d D (SPM)
4.6.4.e D (FSM)
5. K Detailed Requirements
5.1 K System requirements analysis/design
5.1.1 K Software development management
5.1.1.1 K (Support the System Requirements Review (SRR))
5.1.1.2 K (Support the System Design Review (SDR))
5.1.2 K Software engineering
5.1.2.1 K (Analyze preliminary system specifications)
5.1.2.2 K (Allocate system requirements)
5.1.2.3 K (Define preliminary engineering requirements)
5.1.2.4 K (Define preliminary interface requirements
5.1.3 K (Define CSCI preliminary qualification rqmts)
5.1.4 K Software product evaluations
5.1.4.a K (Evaluate the SDP)
5.1.4.b D (Evaluate the SSDD)
5.1.4.c K (Evaluate the preliminary SRS for each CSCI)

52

DETAILED STATUS REPORT (continued)

5.1.4.d K (Evaluate the IRS)
5.1.5 K Configuration management
5.1.5.a K (Place the SDP under configuration control)
5.1.5.b K (Place the SSDD under configuration control)
5.1.5.c K (Put prelim. SSRs under configuration control)
5.1.5.d K (Place prelim. IRS under configuration control)
5.2 K Software requirements analysis
5.2.1 K Software development management
5.2.2 K Software engineering
5.2.2.1 K (Define engineering requirements)
5.2.2.2 K (Define interface requirements)
5.2.3 K (Define a complete set of qualification rqmts)
5.2.4 K Software product evaluations
5.2.4.a K (Evaluate the SRS for each CSCI)
5.2.4.b K (Evaluate the IRS)
5.2.5 K Configuration management
5.3 K Preliminary Design
5.3.1 K Software development management
5.3.2 K Software engineering
5.3.2.1 K (Develop preliminary design for each CSCI)
5.3.2.2 K (Develop prelim. design of CSCI external I/Fs)
5.3.2.3 K (Document other essential design information)
5.3.2.4 K (Establish CSC test requirements)
5.3.3 K (Identify qualification tests)
5.3.4 K Software product evaluations
5.3.4.a K (Evaluate the SDD for each CSCI)
5.3.4.b K (Evaluate the preliminary IDD)
5.3.4.c K (Evaluate the STP)
5.3.4.d K (Evaluate t-e CSC test requirements)
5.3.5 K Configuration management
5.3.5.1 K (Place SDDs into Developmental Configurations)
5.3.5.2 K (Place the STP under configuration control)
5.3.5.3 K (Place the IDD under configuration control)
5.4 K Detailed Design
5.4.1 K Software development management
5.4.2 K Software engineering
5.4.2.1 K (Develop detailed design for each CSCI)
5.4.2.2 K (Develop detailed design of CSCI external I/Fs)
5.4.2.3 K (Document other essential design information)
5.4.2.4 K (Define CSC test cases)
5.4.2.5 K (Define CSU test requirements and test cases)
5.4.3 K (Identify qualification test cases)
5.4.4 K Software product evaluations
5.4.4.a K (Evaluate the updated SDD)
5.4.4.b K (Evaluate the updated IDD)
5.4.4.c K (Evaluate CSC test cases)
5.4.4.d K (Evaluate CSU test requirements and test cases)
5.4.4.e K (Evaluate a percentage of CSU and CSC SDFs)
5.4.4.f K (Evaluate the STD)
5.4.5 K Configuration management

53

DETAILED STATUS REPORT (continued)

5.4.5.1 K (Update each Developmental Configuration)
5.4.5.2 K (Place updated IDD under configuration control)
5.4.5.3 K (Place each STD under configuration control)
5.5 K Coding and CSU testing
5.5.1 K Software development management
5.5.2 K Software engineering
5.5.2.1 K (Develop CSU test procedures)
5.5.2.2 K (Code and test CSUs)
5.5.2.3 K (Revise documents and code based on CSU tests)
5.5.2.4 K (Develop CSC test procedures)
5.5.3 K Formal qualification testing
5.5.4 K Software product evaluations
5.5.4.a K (Evaluate the source code)
5.5.4.b K (Evaluate the CSC test procedures)
5.5.4.c K (Evaluate CSU test procedures and test results)
5.5.4.d K (Evaluate a percentage of updated SDFs)
5.5.5 K Configuration management
5.5.5.1 K (Update each Developmental Configuration)
5.5.5.2 K (Place source code under configuration control)
5.6 K CSC Integration and Testing
5.6.1 K Software development management
5.6.2 K Software engineering
5.6.2.1 K (Conduct CSC integration and testing)
5.6.2.2 K (Record CSC test results)
5.6.2.3 K (Revise design documentation and code)
5.6.3 K Formal qualification testing
5.6.3.1 K (Develop FQT test procedures)
5.6.3.2 K (Dry run FQT test procedures)
5.6.4 K Software product evaluations
5.6.4.a K (Evaluate CSC test results)
5.6.4.b K (Evaluate updated STD)
5.6.4.c K (Evaluate updated code and design documents)
5.6.4.d K (Evaluate a percentage of updated SDFs)
5.6.5 K Configuration management
5.7 K CSCI Testing
5.7.1 K Software development management
5.7.2 K Software engineering
5.7.2.1 K (Revise documentation and code based on FQT)
5.7.2.2 K (Revise the IDD based on FQT)
5.7.2.3 K (Produce updated source code)
5.7.2.4 K (Produce an SPS for each CSCI)
5.7.3 K Formal qualification testing
5.7.3.1 K (Perform formal qualification testing)
5.7.3.2 K (Prepare Software Test Reports)
5.7.3.3 K (Prepare updated STD for each CSCI)
5.7.4 K Software produce evaluations
5.7.4.a K (Evaluate STRs)
5.7.4.b K (Evaluate updated code and design documents)
5.7.5 K Configuration management
5.7.5.1 K (Document the exact version of each CSCI)

54

DETAILED STATUS REPORT (continued)

5.7.5.2 K (Dis-establish Developmental Configurations)
5.8 K System integration and testing
5.8.1 K Software development management
5.8.2 K Software engineering
5.8.3 K Formal qualification testing
5.8.3.1 K (Support development of test documentation)
5.8.2.3 K (Support testing activities)
5.8.3.3 K (Support post test analysis)
5.8.4 K Software product evaluations
5.8.5 K Configuration management
B. k Appendix B--Requirements for coding standards
B.10.3.1 K Presentation style
B.10.3.2 K Naming
B.10.3.3 K Restrictions on the implementation language
B.10.3.4 K Use of language constructs and features
B.10.3.5 K Complexity
C. K Appendix C--Category & priority classification
C.10.2.a K Classify by category--Software problem
C.10.2.b K Classify by category--Documentation problem
C.I0.2.c K Classify by category--Design problem
C.10.3.a K Classify by priority--PRIORITY 1
C.10.3.b K Classify by priority--PRIORITY 2
C.20.3.c K Classify by priority--PRIORITY 3
C.10.e.d K Classify by priority--PRIORITY 4
C.10.3.e K Classify by priority--PRIORITY 5
D. K Appendix D--Evaluation criteria
D.10.2.1 K Internal consistency
D.10.2.2 K Understandability
D.10.2.3 K Traceability to indicated documents
D.10.2.4 K Consistency with indicated documents
D.10.2.5 K Appropriate techniques
D.10.2.6 K Appropriate allocation of sizing and timing
D.10.2.7 K Adequate test coverage of requirements
D.10.3 K Additional criteria
D.10.3.1 K Adequacy of quality factors
D.10.3.2 K Testability of requirements
D.10.3.3 K Consistency between data definition and use
D.10.3.4 K Adequacy of test cases and test procedures
D.10.3.5 K Completeness of testing
D.10.3.6 K Completeness of retesting

TAILOR REPORT
ACTION ITEM LIST
PROJECT: MAJOR

1. Ensure that the software is required to be delivered as
a contract line item.

2. Tailor the Software Development Plan (SDP) DID (DI-MCCR-
80030A) for your project and require delivery of the SDP
as a CDRL item.

3. Tailor the System/Segment Design Document (SSDD) DID
(DI-CMAN-80534) for your project and require delivery of
the SSDD as a CDRL item.

4. Tailor the Software Requirements Specification (SRS) DID
(DI-MCCR-80025A) for your project and require delivery
of the SRSs as CDRL items.

5. Tailor the Interface Requirements Specification (IRS)
DID (DI-MCCR-80026A) for your project and require
delivery of the IRSs as CDRL items.

6. Tailor the Software Design Document (SDD) DID (DI-MCCR-
80012A) for your project and require delivery of the
SDDs as CDRL items.

7. Tailor the Interface Design Document (IDD) DID (DI-MCCR-
80027A) for your project and require delivery of the
IDDs as CDRL items.

8. Tailor the Software Product Specification (SPS) DID (DI-
MCCR-80029A) for your project and require delivery of
the SPSs as CDRL items.

9. Tailor t1... ...t.re Test Pir (STP) DID (DI-MCCR-80014A)
for your project and require delivery of the STP as a
CDRL item.

10. Tailor the Software Test Description (STD) DID (DI-MCCR-
80015A) for your project and require delivery of the
STDs as CDRL items.

11. Tailor the Software Test Report (STR) DID (DI-MCCR-
80017A) for your project and require delivery of the
STRs as CDRL items.

12. Tailor the Computer Resources Integrated Support
Document (CRISD) DID (DI-MCCR-80024A) for your project
and require delivery of the CRISD as a CDRL item.

ACTION ITEM LIST (continued)

13. Tailor the Computer System Operator's Manual (CSOM) DID
(DI-MCCR-80018A) for your project and require delivery
of the CSOMs as CDRL items.

14. Tailor the Software User's Manual (SUM) DID (DI-MCCR-
80019A) for your project and require delivery of the
SUMs as CDRL items.

15. Tailor the Version Description Document (VDD) DID (DI-
MCCR-80013A) for your project and require delivery of
the VDDs as CDRL items.

16. Specify in the Statement of Work how the contractor is
to support the System Requirements Review (SRR).
Guidance on the SRR is provided in MIL-STD-1521B.

17. Specify in the Statement of Work how the contractor is
to support the System Design Review (SDR). Guidance on
the SDR is provided in MIL-STD-1521B.

18. Put MIL-STD-1521B on contract and tailor its Software
Specification Review (SSR) requirements for your
project.

19. Put MIL-STD-1521B on contract and tailor its Preliminary
Design Review (PDR) requirements for your project.

20. Put MIL-STD-1521B on contract and tailor its Critical
Design Review (CDR) requirements for your project.

21. Put MIL-STD-1521B on contract and tailor its Test Readi-
ness Review (TRR) requirements for your project.

22. Specify in the Statement of Work how the contractor is
to support the Functional Configuration Audit and
Physical Configuration Audit (FCA/PCA). Guidance on FCA
and PCA is provided in MIL-STD-1521B.

23. Specify in the Statement of Work how the contractor is
to interface with the software IV&V agent.

24. Ensure that the necessary security requirements are
defined in the contract.

25. Specify menory and timing requirements in the Statement
of Work.

26. Specify the required high order language in the
contract, if desires.

ACTION ITEM LIST (continued)

27. Specify in the Statement of Work the contractor's role
in the development of system test plans, test cases, and
test procedures.

28. Specify in the Statement of Work the contractor's role
in performing system integration and testing.

29. Specify in the Statement of Work the contractor's role
in post-test analysis and reporting for system-level
testing.

30. Specify in the Statement of Work the support environment
computer system on which the delivered software must be
regenerable and maintainable.

31. Specify in the Statement of Work the contractor's tasks
related to installation and checkout in the support
environment.

32. Specify in the Statement of Work the contractor's tasks
related to training of support agency personnel and
continuing support after delivery of the software.

END OF ACTION ITEM LIST

DID TAILORING DECISIONS
PROJECT: MAJOR

CDRL ITEM: Software Development Plan DID (DI-MCCR-
80030A)

TAILORING ENTRY: All DID paragraphs apply with the
following exceptions:

10.2.5.2.3 - Delete reference to firmware; no software
will be implemented in firmware.

10.2.6.1.3 - Delete reference to firmware; no software
will be implemented in firmware.

10.2.6.1.3.2 - Delete all reference to firmware; no
software will be implemented in firmware.

10.2.8.5 - Update noncurrent reference to DOD-STD-
2167 to read "DOD-STD-2167A."

CDRL ITEM: System/Segment Design Document DID (DI-

CMAN-80534)

TAILORING ENTRY: No entry--All DID paragraphs apply.

CDRL ITEM: Software Requirements Specification DID
(DI-MCCR-80025A)

TAILORING ENTRY: All DID paragraphs apply with the
following exceptions:

10.1.5.7 - Delete entire paragraph; performance of
safety analysis on requirements, design,
and procedures is not required.

CDRL ITEM: Interface Requirements Specification DID

(DI-MCCR-80012A)

TAILORING ENTRY: No entry--All DID paragraphs apply.

CDRL ITEM: Software Design Document DID (DI-MCCR-
80012A)

TAILORING ENTRY: No entry--All DID paragraphs apply.

CDRL ITE!:: Interface Design Document DID (DI-MCCR-

80027A)

TAILORING ENTRY: No entry--All DID paragraphs apply.

C57

DID TAILORING DECISIONS (continued)

CDRL ITEM: Software Product Specifications DID (DI-
MCCR-80029A)

TAILORING ENTRY: No entry--All DID paragraphs apply.

CDRL ITEM: Software Test Plan DID (DI-MCCR-80014A)

TAILORING ENTRY: All DID paragraphs apply with the
following exceptions:

10.1.5 - Delete reference to firmware; no software
will be implemented in firmware.

10.1.5.2 - Delete reference to firmware; no software
will be implemented in firmware.

CDRL ITEM: Software Test Description DID (DI-MCCR-
80015A)

TAILORING ENTRY: No entry--All DID paragraphs apply.

CDRL ITEM: Software Test Report DID (DI-MCCR-80017A)

TAILORING ENTRY: No entry--All DID paragraphs apply.

CDRL ITEM: Computer Resources Integrated Support
Document DID (DI-MCCR-80024A)

TAILORING ENTRY: No entry--All DID paragraphs apply.

CDRL ITEM: Computer System Operator's Manual DID
(DI-MCCR-80018A)

TAILORING ENTRY: All DID paragraphs apply with the
following exceptions:

10.1.6.2 - Delete reference to firmware; no software
will be implemented in firmware.

10.1.6.3 - Delete reference to firmware; no software
will be implemented in firmware.

CDPL ITEM: Software User's Manual DID (DI-MCCR-
80019A)

TAILORING ENTRY: No entry--All DID paragraphs apply.

CDRL ITEM: Version Description Document DID (DI-
MCCR-0013A)

DID TAILORING DECISIONS (continued)

TAILORING ENTRY: No entry--All DID paragraphs apply.

CDRL ITEM: Software Programmer's Manual DID (DI-
MCCR-80012A)

TAILORING ENTRY: This DID will not be delivered as a CDRL
ITEM. A Software Programmer's Manual is
not required.

CDRL ITEM: Firmware Support Manual DID (DI-MCCR-
80022A)

TAILORING ENTRY: This DID will not be delivered as a CDRL
ITEM. A firmware support manual is not
required since no software will be
implemented in firmware.

CDRL ITEM: System/Segment Specification DID (DI-
CMAN-80008A)

NOTE: This DID is invoked by MIL-STD-490A vice DOD-
STD-2167A and is only cited in DOD-STD-2167A.
However, its format and content preparation
are to be in accordance with this DID and it
can be delivered as a CDRL ITEM.

TAILORING ENTRY: All DID paragraphs apply with the
following exceptions:

10.1.5.2.4 - Delete reference to safety; performance
of safety analysis on requirements,
design, and procedures is not required.

10.1.5.3.1.1 - Delete paragraph; there are no require-
ments for the control of toxic products
or formulations known at this time.

10.1.5.3.6 - Delete paragraph; performance of safety
analysis on requirements, designs, and
procedures is not required.

10.1.5.3.8 - Delete paragraph; there are no system
requirenents for nuclear components at
this tine.

10.1.8.1.2 - Delete paragraph; there are no present
requirements to analyze current and
potential enery weapon capabilities or
any other threat considerations that
affect syste7 design at this tine.

MIL-STD-1521B (REVIEWS AND AUDITS)
TAILORING DECISIONS
PROJECT: MAJOR

SYSTEM REOUIREME"TS REVIEW (SRR)

The specific details of how the contractor should

support the System Requirements Review (SRR) are project

specific depending on the scope of the project, nature of

the product, and operating environment. To apply specific

details to such a general software project category, such as

"Major," would be inappropriate and probably inaccurate.

Some general requirements the contractor/developer might be

responsible for are:

1. Establishing the time, place, and agenda for the SRR
in consonance with the master milestone schedule.

2. Ensure that the review takes place appropriately near
the completion of the System Requirements Analysis
phase. (A significant portion of the system
functional requirements (System/Segment Specification
DID) needs to have been established in order to
ascertain the adequacy of the contractor's efforts in
defining and fulfilling system and user requirements.)

3. Prepare for the review in sufficient deta_- consistent
with the scope and magnitude of the review.

4. Provide a stenographer to record inputs to official
meeting minutes, action items, conclusions, and
recommended courses Qf action resulting from
discussions.

More specifically, the contractor/developer may want to

review some of the items listed in Appendix A, paragraph

10.3 of MIL-STD-1521B, as appropriate. Also, the contractor

should "discuss his progress and problems in:

62

MIL-STD-1521B (REVIEWS AND AUDITS) (continued)

1. Risk identification and risk ranking.

2. Risk avoidance/reduction and control.

3. Significant trade-offs among stated system/segment
specification requirements/constraints and resulting
engineering design requirements/constraints,
manufacturing methods/progress constraints and unit
production cost/design-to-cost objectives.

4. Identifying computer resources of the system and
partitioning the system into HWCIs and CSCIs." (MIL-
STD-1521B, 1985, pp. 21/22)

Any other responsibilities of the contractor, as alluded

to earlier, would be totally dependent on the specific

requirements of the system under consideration. (Even the

MIL-STD-1521B only delineates and expresses "general"

requirements such as those mentioned above.) The "bottom-

line" is to discuss and review the most economical balance

of elements which meet total system requirements and is

responsive to the statement of work (SOW).

SYSTEM DESIGN REVIEW (SDR)

The details of the System Design Review, much like the

System Requirements Review, are also very project specific

taking into account tlhe necessary requirements of the system

under review. The general requirements that the contractor/

developer are responsible for under the System Requirements

Review arF also applicable for the System Design Review

except that it should be conducted upon completion of the

Syster Design Phase vice Syster Reqirements Analysis.

Docurents that shc'-id e reviewed inuiude the SysteSegment

C 3

MIL-STD-1521B (REVIEWS AND AUDIT6) (continued)

Specification, Software Requirements Specification, Inter-

face Requirements Specification, and the System/Segment

Design Document. (All reference to the Operational Concept

Document should be deleted and replaced with the System/

Segment Design Document. This will make the MIL-STD-1521B,

with respect to the System Design Review, compatible with

the DOD-STD-2167A.) The SDR shall also include a review of

those items listed in paragraphs 20.3 to 20.3.14.5 of MIL-

STD-1521B, as appropriate to the specific system under

review (MIL-STD-1521B, 1985, pp. 24-30). However, it should

be noted that if the development effort consists only of

software, paragraph 20.3.14 and all its related subpara-

graphs should be deleted since they relate only to HWCIs.

The following reviews/audits need to be tailored, as

delineated in action items 18-22 (see Action Item List

Report), and prior to use with DOD-STD-2167A in order to

ensure inherent incompatibilities between DOD-STD-2167A and

MIL-STD-1521B have been resolved.

* NOTE: These tailoring decisions are a result of a

personal analysis of the various reviews/audits in

MIL-STD-1521B by the author and from guidance

contained in MIL-HDBK-287, Appendix B.

64

MIL-STD-1521B (REVIEWS AND AUDITS) (continued)

SOFTWARE SPECIFICATION REVIEW (SSR)

- Documents to be reviewed:

1. Software Requirements Specification.

2. Interface Requirements Specification.

- Delete reference to Operational Concept Document. This
document was replaced with the System/Segment Design
Document and was already reviewed in the System Design
Review.

- Replace paragraph 30.2.a-g with:

"a. The information contained in the Software Require-
ments Specification(s), as tailored.

b. The information contained in the Interface Require-
ments Specification(s), as tailored."

(Items a-g relate to requirements that already form part
of a project's tailored Software Requirements Specifica-
tion or Interface Requirements Specification.)

- Delete paragraph 30.2.h and 30.2.i as these were covered
in the System Requirements Review.

All other paragraphs and requirements apply.

PRELIMINARY DESIGN REVIEW (PDR)

- Documents to be reviewed:

1. Software Design Document.

2. Interface Design Document.

3. Software Test Plan.

4. Computer Resources Integrated Support Document.

5. Software User's Manual.

6. Computer Software Operator's Manual.

- Paragraph 40.1: Delete reference to the Draft Hardware
Product Specification if the development effort consists
of software only; Delete reference to the Computer

C5

MIL-STD-1521B (REVIEWS AND AUDITS) (continued)

System Diagnostic Manual as it has been eliminated from
DOD-STD-2167A.

- Paragraph 40.1: Replace "Software Top Level Design
Document," "Software Detailed Design Document," and
"Data Base Design Document" with "Software Design
Document"; all three documents have been combined and
incorporated into the Software Design Document of DOD-
STD-2167A.

- Paragraph 40.1: Delete reference to the Software Pro-
grammer's Manual and Firmware Support Manual as neither
document is required to be delivered for this category
of FNOC software development.

- Paragraphs 40.2.l.a-m, 40.3.1, 40.5.5, 40.5.7, 40.5.8,
40.5.9, 40.6.6, 40.6.8, 40.6.9, 40.9.1-3, 40.10 and all
subparagraphs, 40.12 and all subparagraphs, 40.14 and
all subparagraphs, 40.15 and all subparagraphs, 40.16
and all subparagraphs, and 40.19.1-3; delete these
paragraphs if the development effort consists only of
software. These paragraphs deal strictly in HWCIs.

- Paragraphs 40.5.1, 40.6.1, 40.6.2, 40.7.1, 40.7.2,
40.13.1, 40.13.3, 40.13.4 and all their related sub-
paragraphs; delete all reference to hardware in these
paragraphs if the development effort consists solely of
software. All reference to CSCIs and software products
still apply.

- Paragraph 40.8 and all subparagraphs; delete references
to safety issues as safety analyses of requirements,
design, and procedures are not required for this
category of FNOC software development.

- Substitute "CSC" for "Top Level CSC(TLCSC)" and "Low
Level CSC(LLCSC)" to make MIL-STD-1521B consistent with
DOD-qTD-2167A.

- Substitute "Preliminary Design" for "Top Level Design"
to make MIL-STD-1521B consistent with DOD-STD-2167A.

- Replace 40.2.2.a-m with:

1"40.2.2 CSCIs:

a. The preliminary design information contained in the
Software Design Document(s), as tailored.

C,

MIL-STD-1521B (REVIEWS AND AUDITS) (continued)

b. The preliminary interface design information
contained in the Interface Design Document(s), as
tailored.

c. The contractor's plans for formal qualification
testing as documented in the Software Test Plan, as
tailored."

This substitution is made as items a-m (requirements) of
40.2.2 now form a part of one of these respective
documents in DOD-STD-2167A.

- Replace 40.13.8-10 with:

"40.13.8 For CSCIs, review the Software Test Plan, or
its equivalent as required by the contract, for
completeness and technical adequacy in specifying plans
for Formal Qualification Testing."

This is done because the requirements contained in these
paragraphs are now incorporated into the Software Test
Plan of DOD-STD-2167A.

- Substitute "CSU" for "Unit" to make MIL-STD-1521B
consistent with DOD-STD-2167A.

CRITICAL DESIGN REVIEW (CDR)

- Documents to be reviewed:

1. Software Design Document.

2. Interface Design Document.

3. Soitware Test Description.

4. Computer Resources Integrated Support.

5. Software User's Manual.

6. Computer System Operator's Manual.

- Delete reference to the Firmware Support Manual and
Software Programmer's Manual as these documents are not
required to be delivered for this category of FNOC
software projects.

- Paragraphs 50.1.1, 50.2.l.a-m, 50.3.1, 50.3.1.l.a-j,
5C'.4.a-c, 50.6.5, 5C0. .1, 50.9.1-3, 50.10 and all

C7

MIL-STD-1521B (REVIEWS AND AUDITS) (continued)

subparagraphs (except 50.l0.3.e), 50.12 and all subpara-
graphs, 50.13.5, 50.15, 50.16; delete these paragraphs
if the development effort consists only of software.
These paragraphs deal strictly in HWCIs.

- Paragraphs 50.5.1, 50.5.5, 50.5.7, 50.6.1, 50.6.3,
50.7.1, 50.13.3, and 50.13.4; delete all reference to
hardware if the development effort consists solely of
software. All reference to CSCIs and software products
still apply.

- Paragraphs 50.7.4.e, 50.8 and all subparagraphs; delete
references to safety as safety analyses for require-
ments, design, and procedures are not required for this
category of FNOC software development.

- Substitute "Software Design Document" for "Software Top
Level Design Document" and "Software Detailed Design
Document." These documents have been incorporated into
the Software Design Document in the DOD-STD-2167A and
now makes the MIL-STD-1521B compatible with DOD-STD-
2167A.

- Delete all reference to "top level CSC" and "lower level
CSC" and substitute "CSC." This makes MIL-STD-1521B
compatible with DOD-STD-2167A.

- Delete all reference to "Unit" and substitute "CSU."
This lends compatibility between MIL-STD-1521B and DOD-
STD-2167A.

- Delete all reference to the Data Base Design Document as
this document has been eliminated from DOD-STD-2167A.
(It is now part of the Software Design Document in DOD-
STD-2167A.)

- Substitute for paragraph 50.2.2.a:

"a. The detailed design information contained in the
Software Design Document(s), as tailored.

b. The detailed interface design information contained
in the Interface Design Document(s), as tailored.

c. The test plans and test case information contained
in the Software Test Description, as tailored.

This substitution is made in order to make the docu-
nents, and their related information and requirements,

6 C

MIL-STD-1521B (REVIEWS AND AUDITS) (continued)

in paragraph 50.2.2 of MIL-STD-1521B compatible with
those in DOD-STD-2167A.

TEST READINESS REVIEW (TRR)

- Documents to be reviewed:

1. Software Test Description.

2. Software User's Manual.

3. Computer Software Operator's Manual.

4. Computer Resources Integrated Support Manual.

- Delete all reference to the Firmware Support Manual and
Software Programmer's Manual as these documents are not
required to be delivered for this category of FNOC
software projects.

- Delete reference to the Computer System Diagnostic
Manual. This document has been eliminated from DOD-STD-
2167A.

- Substitute "Software Design Document" for "Software Top
Level Design Document," "Software Detailed Design
Document," and "Data Base Design Document." These
documents have all been incorporated into the Software
Design Document of DOD-STD-2167A.

- Delete paragraph 60.2.4; Software test procedures now
form a part of the Software Test Description and the
requirement to review this document already exists.

- Add a requirement to review a summary of CSC testing and
the Formal Qualification Testing (FQT) dry run results.
This should be added because the contractor should
conduct the tests documented in the Software Test
Description for each CSCI to ensure that the procedures
are complete and accurate and that the software is ready
for FQT. (DOD-STD-2167A paragraph 5.6.3.2 refers.)

6

MIL-STD-1521B (REVIEWS AND AUDITS) (continued)

FUNCTIONAL CONFIGURATION AUDIT (FCA)

- Documents to be reviewed:

1. Software Test Report.

2. Software User's Manual.

3. Computer Software Operator's Manual.

- Delete reference to Computer System Diagnostic Manual as
it has been eliminated from DOD-STD-2167A.

- Add a requirement for the contractor to submit the final
draft product specification for the configuration
item(s) to be audited to the contracting agency for
review prior to the Functional Configuration Audit
(FCA).

- General contractor responsibilities are listed in
paragraph 70.3 (and related subparagraphs) of Appendix
G, MIL-STD-1521B and should be included in the SOW.

- SOW should make provisions for the contractor to provide
to the FCA Team all related testing information listed
in paragraph 70.4.2, Appendix G, MIL-STD-1521B.

- Provisions in the SOW should require the contractor to
accomplish sufficient analysis or simulation to ensure
configuration item performance where performance param-
eters could not be completely verified during testing.

- Delete paragraph 70.4.7 when the development effort
consists of software only. This paragraph deals solely
with HWCIs.

- Contractor should be required to develop a checklist
which identifies documentation, hardware and computer
software to be available and tasks to be accomplished at
the FCA for the configuration item.

- Additional requirements, specifically related to CSCIs,
should be added to the SOW as listed in paragraph
70.4.12, Appendix G, MIL-STD-1521B.

- Any other requirements should be annotated, as appropri-
ate dependent on the specific nature or function of the
project being audited.

70

MIL-STD-1521B (REVIEWS AND AUDITS) (continued)

PHYSICAL CONFIGURATION AUDIT (PCA)

- Documents to be Reviewed:

1. Software Product Specification.

2. Version Description Document.

3. Software User's Manual.

4. Computer Software Operator's Manual.

- Delete Software Programmer's Manual and Firmware Support
Manual as these documents will not be delivered for this
category of FNOC software projects.

- Make provisions in the SOW that reqaire the contractor
to provide all quality control records to ensure the as-
coded configuration is reflected by this documentation.

- Delete reference to the Computer System Diagnostic
Manual, Software Programmer's Manual and Firmware
Support Manual in paragraph 80.1.4. These documents are
not required to be delivered in this category of FNOC
software projects.

- Contractor must provide all data pertinent to the
configuration item being audited at the time of the
audit. Required information should include that listed
in paragraphs 80.3.1a and b and 80.3.2.1-1, 80.3.3a-e
with the following exceptions:

1. Delete 80.3.1.a(l), (4) & (5), 80.3.3.d & e, and
80.3.2.e,f,g & h if the development effort deals
solely with software. These requirements address
items of hardware.

2. Delete reference to Computer System Diagnostic
Manual and Firmware Support Manual in paragraph
80.3.2.i. These items have been eliminated or are
not required to be delivered respectively.

- Delete 80.4.1, 80.4.2, 80.4.3, and its subparagraphs,
80.4.5, 80.4.6, 80.4.7, and 80.4.8 if the development
consists strictly of software. These paragraphs
strictly address HWCIs.

- Ensure all actions listed in paragraph 80.4.10, Appendix
H, MIL-STD-1251B are perforned for each CSCI.

71

MIL-STD-1521B (REVIEWS AND AUDITS) (continued)

- Any other requirements, actions, or information should
be included, as appropriate, dependent on the specific
nature of the project being audited.

APPENDIX B

INTERMEDIATE PROJECTS

Much difficulty was encountered in trying to establish

category criteria applicable to "Intermediate" projects.

Because of its position between the "Major" and "Minor"

projcct categories and the number of possible requirements

combinations, it became too complex to establish definitive

criterion values appropriate to an "Intermediate" project

category. Every time an attempt was made to assign a value

to an "Intermediate" criterion, FNOC personnel, in an effort

to ensure all possible situations would be addressed, always

ended up assigning a value that ultimately placed it in the

"Major" category. As a result, no "skeletonized," tailored

version of the standard was developed. Once projects are

determined to belong in this category (because it did not

meet the criteria of either the "Major" or "Minor" categor-

ies), each project will have to be judged, reviewed,

analyzed, and tailored according to its individual require-

ments and needs. The general technique used will be to

start with the requirements of a "Major" project and work

down, deleting those requirements that aren't applicable to

the specific prcject under consideration.

There are, however, some general, "if-then" guidelines

that could be of some benefit to a developer/contractor when

dealing with a project within this category:

1. Obviously, lines of code will fall somewhere between
the values established for "Major" and "Minor"
categories (greater than 2000 and less than 20,000).

2. The developer/contractor should assume that at least
those requirements, DIDs and reviews that apply to
"Minor" projects are also applicable to those projects
in the "Intermediate" category.

3. If formal qualification and/or system-level testing is
required, then the developer/contractor should review
and tailor the Software Test Plan (DI-MCCR-80015A),
and Software Test Report (DI-MCCR-80017A) DIDs.

4. If there are interfaces to other systems, then the
developer/contractor should review and tailor the
Interface Requirements Specification (DI-MCCR-80026A)
and Interface Design Document (DI-MCCR-80027A) DIDs.

5. If there are hardware and/or firmware specifications
involved, then the contractor should review and tailor
the System/Segment Specification (DI-CMAN-80008A),
System/Segment Design Document (DI-CMAN-80534) and/or
Firmware Support Manual (DI-MCCR-80022A) DIDs.

6. In addition, the developer/contractor should review
and specify requirements for any of the applicable
reviews that may be involved due to the possible
addition of any of these DIDs. These reviews are the
System Requirements Review, System Design Review, and
the Test Readiness Review.

These guidelines provide a reference point from which

the developer/contractor may begin his efforts. To estab-

lish more detailed/tailored requirements and standards would

be impractical. Therefore, one must simply consider the

individual requirements, products, and environment of a

specific project within this category and tailor the

standard and associated DIDs accordingly.

APPENDIX C

MINOR PROJECTS

This appendix represents the tailored version of DOD-

STD-2167A for a FNOC "Minor" project. In keeping with the

format of Appendix A for "Major" projects, this appendix is

divided into two parts. The first part represents the

tailored DOD-STD-2167A standards requirements utilizing the

automated tailoring software package "Tailor" and contains

five reports:

1. Project Description Answers.

2. Quick-Tailor Selections.

3. Statement of Work Report.

4. Detailed Status Report.

5. Action Item List.

The second part contains the tailored set of DIDs,

reviews, and audits (MIL-STD-1521B) appropriate to this set

of tailored standards requirements and applicable to a

"Minor" project. It should be noted that this tailored

version represents only a skeletonized package applicable to

a general category of software projects and must be further

tailored/refined to meet the individual requirements of a

specific project within this category. Of particular note

are items 13 through 16 of the Action Item List Report.

These items (shell requirements) remain project dependent

and must be specifically stated in a contract/development

plan and dealt with during the refinement process for that

particular project.

NOTE: The Physical and Functional Configuration Audits were

included as requirements for a "Minor" project only as an

effort to ensure maximum coverage. It is the feeling of

FNOC personnel that the requirement to perform these audits

will be rare where "Minor" projects are concerned and were

only included so that those tailoring the standard would be

aware of their existence. Therefore, the tailoring of these

audits will be reserved for those projects for which they

are applicable and will not form a part of this appendix.

The tailoring effort of the standard, associated DIDs, and

reviews for "Minor" projects eill consist of identifying

those items that are non-applicable because of "Minor"

project characteristics.

TAILOR REPORT
PROJECT DESCRIPTION ANSWERS
PROJECT: MINOR

SCREEN 1. ACTIVITIES OVERVIEW

NO 1. Help define system-level requirements and design
YES 2. Define software requirements
YES 3. Design the software
YES 4. Code the software
YES 5. Perform unit/component testing
NO 6. Perform formal cualification testing
NO 7. Support system-level testing

YES 8. Perform product evaluations
YES 9. Perform configuration management
YES 10. Prepare for software use and support
YES 11. Install software at the support site
YES 12. Conduct/support formal reviews and audits

SCREEN 2. PROJECT CHARACTERISTICS

NO 1. There may be subcontractors
NO 2. There are security issues on this project
NO 3. Some or all of the software will be implemented

in firmware
YES 4. The software will have user interf-es
NO 5. The contract will specify reserve memory/timing

capacities
NO 6. There will be an IV&V agent
NO 7. Contractor will be responsible for CSCI-external

interfaces
NO 8. Software errors could threaten personnel or

property safety
YES 9. The software will run on computers with commer-

cial/GFE manuals
NO IC. There are significant risks to project success

SCREEN 3. SOFTWARE DEVELOPMENT PRACTICES

YES 1. Require 2167A project management practices
YES 2. Require 2167A software engineering practices
NO 3. Require 2!67A formal qualification testing

practices
NO 4. Require 2167A software product evaluation

practices
YES 5. Require 2167A configuration management practices

TAILOR REPORT
QUIK-TAILOR SELECTIONS
PROJECT: MINOR

SCREEN 1. PRODUCTS TO BE DEVELOPED

YES 1. Source code
YES 2. Software Development Plan (SDP)
NO 3. System/Segment Design Document (SSDD)

YES 4. Software Requirements Specification (SRS)
NO 5. Interface Requirements Specification (IRS)

YES 6. Software Design Document (SDD)
NO 7. Interface Design Document (IDD)

YES 8. Software Product Specification (SPS)
NO 9. Software Test Plan (STP)
NO 10. Software Test Description (STD)
NO 11. Software Test Report (STR)

YES 12. Computer Resources Integrated Support Document
(CRIED)

NO 13. Computer System Operator's Manual (CSOM)
YES 14. Software User's Manual (SUM)
NO 15. Software Programmer's Manual (SPM)
NO 16. Firmware Support Manual (FSM)

YES 17. Version Description Document (VDD)

SCREEN 2. REVIEWS AND AUDITS

N7O 1. System Requirements Review (SRR)
NO 2. System Design Review (SDR)

YES 3. Software Specification Review (SSR)
YES 4. Preliminary Design Review (PDR)
YES 5. Critical Design Review (CDR)
NO 6. Test Readiness Review (TRR)

YES 7. Functional and Physical Configuration Audits
(FCA, PCA)

SCREEN 3. PROJECT MANAGEMENT REQUIREMENTS

NO 1. Ensure subcontractor compliance with prime
contract

YES 2. Implement a corrective action process
YES 3. Prepare problem/change reports
YES 4. Internally coordinate products before delivery
NO 5. Inplenent risk management procedures
NO 6. Interface with the software IV&V agent

YES 7. Establish a software development library
NO G. Irple'ent security measures as specified in the

contract

QUIK-TAILOR SELECTIONS (continued)

SCREEN 4. SOFTWARE ENGINEERING PRACTICES

YES 1. Use systematic, documented development methods
YES 2. Establish a software engineering environment
NO 3. Analyze the system specification
NO 4. Perform safety analysis on requirements, design,

and procedures
YES 5. Consider the use of non-developmental software
NO 6. Monitor and maintain required reserve processing

capacity
YES 7. Organize CSCIs into CSCs, CSUs
YES 8. Establish software development files for CSCIs,

CSCs, CSUs
YES 9. Document and implement design and coding

standards
YES 10. Use the approved HOL or obtain approval to use

another

SCREEN 5. REQUIREMENTS FOR CONTRACTOR-
INTERNAL TESTING

YES 1. Develop and document CSU test requirements,
cases, and procedures

YES 2. Perform CSU testing; record results
YES 3. Develop and document CSC test requirements,

cases, and procedures
YES 4. Perform CSC integration and testing; record

results

SCREEN 6. REQUIREMENTS FOR FORMAL QUALIFICA-
TION TESTING

NO 1. Establish a software test environment
NO 2. Dry run FQT procedures
NO 3. Perform FQT on the target computer
NO 4. Use test personnel independent of software

engineers

SCREEN 7. -EQUIREMENTS FOR SYSTEM INTEGRATION
AND TESTING

No 1. Support the development of system test plans and
procedures

NO 2. Support system integration and testing
NI) 3. Support post-test analysis and test reporting

QUIK-TAILOR SELECTIONS (continued)

SCREEN 8. PREPARATIONS FOR SOFTWARE SUPPORT

YES 1. Produce code regenerable and maintainable on a
designated system

YES 2. Install the code in the support environment
YES 3. Provide training and continuing support

SCREEN 9. PRODUCT EVALUATIONS

YES 1. Source code
YES 2. Software Development Plan
NO 3. System/Segment Design Document

YES 4. Software Requirements Specification
NO 5. Interface Requirements Specification

YES 6. Software Design Document
NO 7. Interface Design Document
NO 8. Software Test Plan
NO 9. Software Test Description
NO 10. Software Test Report
NO 11. CSU test requirements, cases, procedures, results
NO 12. CSC test requirements, cases, procedures, results
NO 13. Sample of software development files
NO 14. Keep records of evaluations
NO 15. Use evaluation criteria in the standard
NO 16. Require evaluators to be independent of s/w

engineers

SCREEN 10. CONFIGURATION MANAGEMENT
REQUIREMENTS

YES 1. Perform configuration identification
YES 2. Perform configuration control
YES 3. Perform configuration status accounting
YES 4. Implement procedures for storage, handling, and

delivery
YES 5. Prepare ECPs and SCNs IAW DOD-STD-480, MIL-STD-

481, MIL-STD-490

TAILOR REPORT
STATEMENT OF WORK REPORT
PROJECT: MINOR

The contractor shall comply with all requirements in

DOD-STD-2167A, with the following exceptions:

4.1.4 Delete entire paragraph.

4.1.5 Delete entire paragraph.

4.1.6 Delete entire paragraph.

4.1.7 Delete entire paragraph.

4.2.2 Delete reference to security requirements.

4.2.3 Delete entire paragraph.

4.2.6 Delete reference to IRS.

4.2.10 Delete entire paragraph.

4.3 Delete entire paragraph.

4.3.1 Delete entire paragraph.

4.3.2 Delete entire paragraph.

4.3.3 Delete entire paragraph.

4.3.4 Delete entire paragraph.

4.4.1 Delete entire paragraph.

4.4.3 Delete entire paragraph.

4.4.4 Delete entire paragraph.

4.6.4.b Delete entire paragraph.

4.6.4.d Delete entire paragraph.

4.6.4.e Delete entire paragraph.

5.1.1 Delete entire paragraph.

5.1.1.1 Delete entire paragraph.

.11.2 Delete entire paragra ph .

, -!.i

STATEMENT OF WORK REPORT (continued)

5.1.2.1 Delete entire paragraph.

5.1.2.2 Delete entire paragraph.

5.1.2.4 Delete entire paragraph.

5.1.4 Delete reference to evaluation criteria.

5.1.4.b Delete entire paragraph.

5.1.4.d Delete entire paragraph.

5.1.5.b Delete entire paragraph.

5.1.5.d Delete entire paragraph.

5.2.1 Delete reference to IRS.

5.2.2.2 Delete entire paragraph.

5.2.4 Delete reference to evaluation criteria.

5.2.4.b Delete entire paragraph.

5.2.5 Delete reference to IRS.

5.3.2.1 Delete reference to IRS.

5.3.2.2 Delete entire paragraph.

5.3.3 Delete entire paragraph.

5.3.4 Delete reference to evaluation criteria.

5.3.4.b Delete entire paragraph.

5.3.4.c Delete entire paragraph.

5.3.4.d Delete entire paragraph.

5.3.5.2 Delete entire paragraph.

5.3.5.3 Delete entire paragraph.

5.4.2.2 Delete entire paragraph.

5.4.3 Delete entire paragraph.

STATEMENT OF WORK REPORT (continued)

5.4.4 Delete reference to evaluation criteria.

5.4.4.b Delete entire paragraph.

5.4.4.c Delete entire paragraph.

5.4.4.d Delete entire paragraph.

5.4.4.e Delete entire paragraph.

5.4.4.f Delete entire paragraph.

5.4.5.2 Delete entire paragraph.

5.4.5.3 Delete entire paragraph.

5.5.4 Delete reference to evaluation criteria.

5.5.4.b Delete entire paragraph.

5.5.4.c Delete entire paragraph.

5.5.4.d Delete entire paragraph.

5.6.1 Delete entire paragraph.

5.6.3 Delete entire paragraph.

5.6.5.1 Delete entire paragraph.

5.6.3.2 Delete entire paragraph.

5.6.4 Delete reference to TRR and evaluation criteria.

5.6.4.a Delete entire paragraph.

5.6.4.b Delete entire paragraph.

5.6.4.d Delete entire paragraph.

5.7.2.2 Delete entire paragraph.

5.7.3 Delete entire paragraph.

5.7.3.1 Delete entire paragraph.

5.7.3-2 Delete entire paragraph.

E.7.3.3 Delete entire paragraph.

STATEMENT OF WORK REPORT (continued)

5.7.4 Delete reference to evaluation criteria.

5.7.4.a Delete entire paragraph.

5.8.3 Delete entire paragraph.

5.8.3.1 Delete entire paragraph.

5.8.3.2 Delete entire paragraph.

5.8.3.3 Delete entire paragraph.

5.8.4 Delete reference to evaluation criteria.

D. Delete entire paragraph.

D.10.2.1 Delete entire paragraph.

D.10.2.2 Delete entire paragraph.

D.10.2.3 Delete entire paragraph.

D.10.2.4 Delete entire paragraph.

D.10.2.5 Delete entire paragraph.

D.10.2.6 Delete entire paragraph.

D.10.2.7 Delete entire paragraph.

D.10.3 Delete entire paragraph.

D.10.3.1 Delete entire paragraph.

D.10.3.2 Delete entire paragraph.

D.10.3.3 Delete entire paragraph.

D.10.3.4 Delete entire paragraph.

D.10.3.5 Delete entire paragraph.

D.10.3.6 Delete entire paragraph.

END OF STATEMENT OF WORK REPORT

TAILOR REPORT
DETAILED STATUS REPORT
PROJECT: MINOR

Para. Status Title/Description

4. K General Requirements
4.1 K Software development management
4.1.1 K Software development process
4.1.l.a K (System Requirements Analysis/Design)
4.1.l.b K (Software Requirements Analysis)
4.1.1.c K (Preliminary Design)
4.1.l.d K (Detailed Design)
4.1.l.e K (Coding and CSU Testing)
4.1.l.f K (CSC Integration and Testing)
4.1.l.g K (CSCI Testing)
4.1.l.h K (System Integration and Testing)
4.1.2 K Formal reviews/audits
4.1.3 K Software development planning
4.1.4 D Risk management
4.1.5 D Security
4.1.6 D Subcontractor management
4.1.7 D Interface with software IV&V agent(s)
4.1.8 K Software development library
4.1.9 K Corrective action process
4.1.9.a K (Implement a closed-loop process)
4.1.9.b K (Provide inputs to corrective action process)4.1.9.c K (Classify problems by category and priority)
4.1.9.d K (Perform trend analysis)
4.1.9.e K (Evaluate corrective action taken)
4.1.10 K Problem/change report
4.2 K Software engineering
4.2.1 K Software development methods
4.2.2 R Software engineering environment
4.2.3 D Safety analysis
4.2.4 K Non-developmental software
4.2.5 K Computer software organization
4.2.6 R Traceability of requirements to design
4.2.7 K High order language
4.2.8 K Design and coding standards
4.2.9 K Software development files
4.2.9.a K (Software development file contents)
4.2.9.b K (Software development file contents)
4.2.9.c K (Software development file contents)
4.2.9.d K (Software development file contents)
4.2.9.e K (Software development file contents)
4.2.10 D Processing resource and reserve capacity
4.3 D Formal qualification testing
4.3.1 D Fornal qualificati-n test planning
4.3.2 D Software test environment
4.3.3 D Inependence in FQT activities

• . , , , i i i i I I I I I |7

DETAILED STATUS REPORT (continued)

4.3.4 D Traceability of requirements to test cases
4.4 K Software product evaluations
4.4.1 D Independence in product evaluation activities
4.4.2 K Final evaluations
4.4.3 D Software evaluation records
4.4.4 D Evaluation criteria
4.5 K Software configuration management
4.5.1 K Configuration identification
4.5.1.a K (Identify baseline documentation)
4.5.1.b K (Identify documentation and media under CM)
4.5.1.c K (Identify each CSCI, CSC, and CSU)
4.5.1.d K (Identify version, release, and change status)
4.5.1.e K (Identify code/documentation relationship)
4.5.1.f K (Identify deliverable medium contents)
4.5.2 K Configuration control
4.5.2.a K (Establish Developmental Configuration(s))
4.5.2.b K (Maintain current copies of deliverables)
4.5.2.c K (Provide access to documents and code under CM)
4.5.2.d K (Control change to master copy of deliverables)
4.5.3 K Configuration status accounting
4.5.3.a K (Provide traceability of changes)
4.5.3.b K (Communicate configuration status)
4.5.3.c K (Ensure consistency between documents and code)
4.5.4 K Storage, handling, and delivery of media
4.5.5 K Engineering Change Proposals
4.6 K Transitioning to software support
4.6.1 K Regenerable and maintainable code
4.6.2 K Transition planning
4.6.3 K Software transition and continuing support
4.6.4 K Software support and operational documentation
4.6.4.a K (CRISD)
4.6.4.b D (CSOM)
4.6.4.c K (SUM)
4.6.4.d D (SPM)
4.6.4.e D (FSM)
5. K Detailed Requirements
5.1 K System requirements analysis/design
5.1.1 D Software development management
5.1.1.1 D (Support the System Requirements Review (SRR))
5.1.1.2 D (Support the System Design Review (SDR)
5.1.2 K Software engineering
5.1.2.1 D (Analyze preliminary system specifications)
5.1.2.2 D (Allocate system requirements)
5.1.2.3 K (Define preliminary engineering requirements)
5.1.2.4 D (Define preliminary interface requirements)
5.1.3 K (Define CSCI preliminary qualification

requirements
5.1.4 R Software product evaluations
5.1.4.a K (Evaluate the SDP)
5.1.4.b D (Evaluate the SSDD)

C

DETAILED STATUS REPORT (continued)

5.1.4.c K (Evaluate the preliminary SRS for each CSCI)
5.1.4.d D (Evaluate the IRS)
5.1.5 K Configuration management
5.1.5.a K (Place the SDP under configuration control)
5.1.5.b D (Place the SSDD under configuration control)
5.1.5.c K (Put prelim. SRSs under configuration control)
5.1.5.d D (Place prelim. IRS under configuration control)
5.2 K Software requirements analysis
5.2.1 R Software development management
5.2.2 K Software engineering
5.2.2.1 K (Define engineering requirements)
5.2.2.2 D (Define interface requirements)
5.2.3 K (Define a complete set of qualification rqmts)
5.2.4 R Software product evaluations
5.2.4.a K (Evaluate the SRS for each CSCI)
5.2.4.b D (Evaluate the IRS)
5.2.5 R Configuration management
5.3 K Preliminary Design
5.3.1 K Software development management
5.3.2 K Software engineering
5.3.2.1 R (Develop preliminary design for each CSCI)
5.3.2.2 D (Develop prelim. design of CSCI external I/Fs)
4.3.2.3 K (Document other essential design information)
5.3.2.4 K (Establish CSC test requirements)
5.3.3 D (Identify qualification tests)
5.3.4 R Software product evaluations
5.3.4.a K (Evaluate the SDD for each CSCI)
5.3.4.b D (Evaluate the preliminary IDD)
5.3.4.d D (Evaluate the STP)
5.3.4.d D (Evaluate the CSC test requirements)
5.3.5 K Configuration management
5.3.5.1 K (Place SDDs into Developmental Configurations)
5.3.5.2 D (Place the STP under configuration control)
5.3.5.3 D (Place the IDD under configuration control)
5.4 K Detailed Design
5.4.1 K Software development management
5.4.2 K Software engineering
5.4.2.1 K (Develop detailed design for each CSCI)
5.4.2.2 D (Develop detailed design of CSCI external I/Fs)
5.4.2.3 K (Document other essential design information)
5.4.2.4 K (Define CSC test cases)
5.4.2.5 K (Define CSU test requirements and test cases)
5.4.3 D (Identify qualification test cases)
5.4.4 R Software product evaluations
5.4.4.a K (Evaluate the updated SDD)
5.4.4.b D (Evaluate the updated IDD)
5.4.4.c D (Evaluate CSC test cases)
5.4.4.d D (Evaluate CSU test requirements and test cases)
5.4.4.e D (Evaluate a percentage of CSU and CSC SDFs)
5 4.4jf D (Evaluate the STD)

E7

DETAILED STATUS REPORT (continued)

5.4.5 K Configuration management
5.4.5.1 K (Update each Developmental Configuration)
5.4.5.2 D (Place updated IDD under configuration control)5.4.5.3 D (Place each STD under configuration control)
5.5 K Coding and CSU testing
5.5.1 K Software development management
5.5.2 K Software engineering
5.5.2.1 K (Develop CSU test procedures)
5.5.2.2 K (Code and test CSUs)
5.5.2.3 K (Revise documents and code based on CSU tests)
5.5.2.4 K (Develop CSC test procedures)
5.5.3 K Formal qualification testing
5.5.4 R Software product evaluations
5.5.4.a K (Evaluate the source code)
5.5.4.b D (Evaluate the CSC test procedures)
5.5.4.c D (Evaluate CSU test procedures and test results)5.5.4.d D (Evaluate a percentage of updated SDFs)
5.5.5 K Configuration management
5.5.5.1 K (Update each Developmental Configuration)5.5.5.2 K (Place source code under configuration control)
5.6 K CSC Integration and Testing
5.6.2 D Software development management
5.6.2 K Software engineering
5.6.2.1 K (Conduct CSC integration and testing)
5.6.2.2 K (Record CSC test results)
5.6.2.3 K (Revise design documentation and code)
5.6.3 D Formal qualification testing
5.6.3.1 D (Develop FQT test procedures)
5.6.3.2 D (Dry run FQT test procedures)
5.6.4 R Software product evaluations
5.6.4.a D (Evaluate CSC test results)
5.6.4.b D (Evaluate updated STD)
5.6.4.c K (Evaluate updated code and design documents)5.6.4.d D (Evaluate a percentage of updated SDFs)
5.6.5 K Configuration management
5.7 K CSCI Testing
5.7.1 K Software development management
5.7.2 K Software engineering
5.7.2.1 K (Revise documentation and code based on FQT)
5.7.2.2 D (Revise the IDD based on FQT)
5.7.2.3 K (Produce updated source code)
5.7.2.4 K (Produce an SPS fcr each CSCI)
5.7.3 D Formal qualification testing
5.7.3.1 D (Perform formal qualification testing)
5.7.3.2 D (Prepare Software Test Reports)
5.7.3.3 D (Prepare updated STD for each CSCI)
5.7.4 R Software product evaluations
5.7.4.a D (Evaluate STRs)
5.7.4.b K (Evaluate updated code and design documents)

K Configuration management

86

DETAILED STATUS REPORT (continued)

5.7.5.1 K (Document the exact version of each CSCI)
5.7.5.2 K (Dis-establish Developmental Configurations)
5.8 K System integration and testing
5.8.1 K Software development management
5.8.2 K Software engineering
5.8.3 D Formal qualification testing
5.8.3.1 D (Support development of test documentation)
5.8.3.2 D (Support testing activities)
5.8.3.3 D (Support post test analysis)
5.8.4 R Software product evaluations
5.8.5 K Configuration management
B. K Appendix B--Requirements for coding standards
B.10.3.1 K Presentation style
B,I0.3.2 K Naming
B.10.3.3 K Restrictions on the implementation language
B.!n.3.4 K Use of language constructs and features
B.10.3.5 K Complexity
C. K Appendix C--Category & priority classification
C.10.2.a K Classify by category--Software problem
C.]0.2.b K Classify by category--Documentation problem
C.l0.2.c K Classify by category--Design problem
C.10.3.a K Classify by priority--PRIORITY 1
C.10.3.b K Classify by priority--PRIORITY 2
C-I0.3.c K Classify by priority--PRIORITY 3
C.1.3.d K Classify by priority--PRIORITY 4
C.'0.3.e K Classify by priority--PRIORITY 5
D. D Appendix D--Evaluation criteria
D.10.2.1 D Internal consistency
D.10.2.2 D Understandability
D.10.2.3 D Traceability to indicated documents
D.10.2.4 D Consistency with indicated documents
D.10.2.5 D Appropriate techniques
D.20.2.6 D Appropriate allocation of sizing and timing
D.10.2.7 D Adequate test coverage of requirements
D.10.3 D Additional criteria
D.10.3.1 D Adequacy of quality factors
D.10.3.2 D Testability of requirements
D.10.3.3 D Consistency between data definition and use
D.10.3.4 D Adequacy of test cases and test procedures
D.10.3.5 D Completeness of testing
D.10.3.6 D Completeness of retesting

TAILOR REPORT
ACTION ITEM LIST
PROJECT: MINOR

1. Ensure that the software is required to be delivered as
a contract line item.

2. Tailor the Software Development Plan (SDP) DID (DI-MCCR-
80030A) for your project and require delivery of the SDP
as a CDRL item.

3. Tailor the Software Requirements Specification (SRS) DID
(DI-MCCR-80025A) for your project and require delivery
of the SRSs as CDRL items.

4. Tailor the Software Design Document (SDD) DID (DI-MCCR-
80012A) for your project and require delivery of the
SDDs as CDRL items.

5. Tailor the Software Product Specification (SPS) DID (DI-
MCCR-80029A) for your project and require delivery of
the SPSs as CDRL items.

6. Tailor the Computer Resources Integrated Support Docu-
ment (CRISD) DID (DI-MCCP-80024A) for your project and
require delivery of the CRISD as a CDRL item.

7. Tailor the Software User's Manu-± (SUM) DID (DI-MCCR-
80019A) for your project and require delivery of the
SUMs as CDRL items.

8. Tailor the Version Description Document (VDD) DID (DI-
MCCR-80013A) for your project and require lelivery of
the VDDs as CDRL items.

9. Put MIL-STD-1521B on contract and tailor its Software
Specification Review (SSR) requirements for your
project.

10. Put MIL-STD-1521B on contract and tailor its Preliminary
Design Review (PDR) requirements for your project.

11. Put MIL-STD-1521B on contract and tailor its Crit al
Design Review (CDR) requirements for your project.

12. Specify in the Statement of Work how the contractor is
to support the Functional Configuration Audit and
Physical Configuration Audit (FCA/PCA). G11i'ance on FCA
and PCA is provided in MIL-STD-1521B.

ACTION ITEM LIST (continued)

13. Specify the required high order language in the
contract, if desired.

14. Specify in the Statement of Work the support environment
computer system on which the delivered software must be
regenerable and maintainable.

15. Specify in the Statement of Work the contractor's tasks
related to installation and checkout in the support
environment.

16. Specify in the Statement of Work the contractor's tasks
related to training of support agency personnel and
continuing support after delivery of the software.

END OF ACTION ITEM LIST

m~i ~ m ! -

DID TAILORING DECISIONS
PROJECT: MINOR

CDRL ITEM: Software Development Plan DID (DI-MCCR-
80030A)

TAILORING ENTRY: All DID paragraphs apply with the
following exceptions:

10.2.5.1.1 - Delete reference to security issues;
there are no security issues associated
with "Minor" projects.

10.2.5.2.3 - Delete reference to firmware; no software
will be implemented in firmware.

10.2.5.3 - Delete paragraph; there are no signifi-
cant risks to project success where
"Minor" projects are concerned.

10.2.5.4 - Delete paragraph; there are no security
issues associated with "Minor" projects.

10.2.5.5 - Delete paragraph; there are no associate
contractors or subcontractors involved in
"Minor" projects.

10.2.5.6 - Delete paragraph; there will be no IV&V
agents for "Minor" projects.

10.2.6.1.3 - Delete reference to firmware; no software
will be implemented in firmware.

10.2.6.1.3.1 - Delete reference to classified processing
and security issues; there are no
security issues associated with "Minor"
projects.

10.2.6.1.3.2 Delete reference to interfacing equipment
and firmware; there will be no inter-
facing with other equipment and no soft-
ware will be implemented in firmware
where "Minor" projects are concerned.

10.2.7 - Delete paragraph and all subsequent sub-
paragraphs; no formal qualification
testing is required for "Minor" projects.

10.2.8 - Delete paragraph and all subsequent sub-
paragraphs; DOD-STD-2167A software
product evaluation practices are not

DID TAILORING DECISIONS (continued)

required. Contractor/developer software
product evaluation practices will
suffice.

10.2.8.3 - Delete paragraph; there are no subcon-
tractors involved in "Minor" projects.

10.2.8.4 - Delete paragraph; no software product
evaluation records are required to be
kept.

10.2.8.5, - Delete paragraphs; contractors/developer
10.2.8.5.1 software product evaluation practices

will suffice.

10.2.9.5 - Delete paragraph; this tailored version
assumes that no configuration audits will
be required. If so, then reincorporate
paragraph.

CDRL ITEM: Software Requirements Specification DID
(DI-MCCR-80025A)

TAILORING ENTRY: All DID paragraphs apply with the
following exceptions:

7.3 - Delete reference to System/Segment
Specification as this DID will not be
associated with "Minor" projects.

10.1.5 - Delete reference to System/Segment
Specification as this DID will not be
associated with "Minor" projects.

10.1.5.1 - Delete paragraph; there will be no
interfaces to other systems where "Minor"
projects are concerned.

10.1.5.4.b - Delete subparagraph; there will be no
interfaces to other systems where "Minor"
projects are concerned.

10.1.5.5.1 - Delete reference to safety limits, there
are nc safety issues associated with
"Minor" projects.

10.1.5.6 - Delete paragraph; there are no sizing and
tiring requirements associated with
"1Iinor" projects.

C.

DID TAILORING DECISIONS (continued)

10.1.5.7 - Delete paragraph; there are no safety
requirements associated with "Minor"
projects.

10.1.5.8 - Delete paragraph; there are no security
requirements associated with "Minor"
projects.

10.1.5.12 - Delete reference to System/Segment
Specification as this DID will not be
associated with "Minor" projects.

10.1.6.2.d - Delete reference to system level testing
as this level of testing will not be
performed for "Minor" projects.

CDRL ITEM: Software Design Document DID (DI-MCCR-
80012A)

TAILORING ENTRY: All DID paragraphs apply with the
following exceptions:

3.2 - Delete reference to Physical Configura-
tion Audit as FNOC personnel do not feel
that these audits will be required with
regard to "Minor" projects. If this
applies to particular project then
reincorporate reference.

10.1.5.1 - Delete reference to external interfaces;
there will be no interfaces to other
systems where "Minor" projects are
concerned.

10.1.5.1.3 - Del-ste paragraph; there are no memory or
timi .> capacity requirements for "Minor"
projects.

10.1.6.1.2.2.h - Delete reference to timing relationships
as these are not required for "Minor"
projects.

10.1.7.6 - Delete paragraphs; there are no
interfaces to other systems where "Minor"
projects are concerned.

CDRL ITEM: Software Product Specification DID (DI-
MCCR-80029A)

94

DID TAILORING DECISIONS (continued)

TAILORING ENTRY: All DID paragraphs apply with the
following exception:

10.1.5.4 - Delete paragraph; it is not required that
"Minor" projects specify reserve memory
or timing capacities.

CDRL ITEM: Computer Resources Integrated Support

Document DID (DI-MCCR-80024A)

TAILORING ENTRY: No entry--All DID paragraphs apply.

CDRL ITEM: Software User's Manual DID (DI-MCCR-
80019A).

TAILORING ENTRY: All DID paragraphs apply with the
following exception:

10.1.5 - Delete reference to the Computer System
Operator's Manual DID as this is not
required to be delivered for "Minor"
projects.

CDRL ITEM: Version Description Document DID (DI-
MCCR-80013A)

TAILORING ENTRY; All DID paragraphs apply with the
following exception:

10.2.5.6 - Delete reference to interfaces with other
systems; there will be no interfaces with
other systems where "Minor" projects are
concerned.

The following DIDs are not required to be delivered as CDRL
ITEMS for "Minor" projects:

1. System/Segment Specification DID (DI-CMAN-80008A).

2. Software Test Plan DID (DI-MCCR-80014A).

3. Software Test Description DID (DI-MCCR-80015A).

4. Software Test Report DID (DI-MCCR-80017A).

5. Computer System Operator's Manual DID (DI-MCCR-
80018A).

6. Software Programner's Manual DID (DI-MCCR-80021A).

C 5

DID TAILORING DECISIONS (continued)

7. Firmware Support Manual DID (DI-MCCR-80022A).

8. Interface Requirements Specification DID (DI-MCCR-
80026A).

9. Interface Design Document DID (DI-MCCR-80027A).

10. System/Segment Design Document DID (DI-CMAN-80534).

9 C

MIL-STD-1521B (REVIEWS AND AUDITS)
TAILORING DECISIONS
PROJECT: MINOR

NOTE: These tailoring decisions are a result of a personal
analysis of the various reviews/audits in MIL-STD-1521B by
the author and from guidance contained in MIL-HDBK-287,
Appendix B.

SOFTWARE SPECIFICATION REVIEW (SSR)

- Documents to be reviewed:

1. Software Requirements Specification

- Paragraph 30.1: Delete references to the Interface
Requirements Specification and Operational Concept
Document (now replaced by the System/Segment Design
Document). These DIDs are not required deliverables for
a "Minor" project and therefore are not applicable.

- Replace paragraph 30.2.A-C with: -a. The information
contained in the Software Requirements Specification, as
tailored."

- Paragraph 30.2.b: Delete reference to timing and
storage requirements. It is not required for "Minor"
projects to specify reserve memory or timing capacities.

- Paragraph 30.2.d: Delete reference to external inter-
faces as "Minor" projects will not interface with other
systems.

All other paragraphs and requirements apply.

PRELIMINARY DESIGN REVIEW (PDR)

- Documents to be reviewed:

1. Software Design Document.

2. Computer Resources Integrated Support Document.

3. Software User's Manual.

- Paragraph 40.1: Delete references to Interface Design
Document, Software Test Plan and Computer Software
User's Manual as these DIDs are not required deliver-
ables for "Minor" projects.

C

MIL-STD-1521B (REVIEWS AND AUDITS) (continued)

- Paragraph 40.1: Delete reference to the Draft Hardware
Product Specification and HWCI Test Plan as "Minor"
projects do not include hardware specifications and/or
changes.

- Paragraph 40.1: Replace "Software Top Level Design
Document," "Software Detailed Design Document," and
"Database Design Document" with "Software Design
Document." These three documents are now combined and
incorporated into the Software Design Document of DOD-
STD-2167A.

- Paragraphs 40.2.1.a-ae, 40.3.1, 40.5.5, 40.5.7, 40.5.8,
40.5.9, 40.6.2, 40.6.6, 40.6.8, 40.6.9, 40.9.1-3, 40.10
and all subparagraphs, 40.12 and all subparagraphs,
40.14 and all subparagraphs, 40.15 and all subpara-
graphs, 40.16 and all subparagraphs, and 40.19.1-3:
Delete these paragraphs as "Minor" projects do not
include HWCIs, firmware and/or hardware specifications/
changes.

- Paragraphs 40.5.1, 40.6.1, 40.7.1, 40.7.2, 40.13.3, and
40.13.4: Delete all reference to HWCIs, hardware
development and interface documents as these are not
included in "Minor" projects.

- Paragraph 40.8 and all subparagraphs: Delete this
paragraph and all related subparagraphs as "Minor"
projects do not include safety requirements.

- All applicable paragraphs: substitute "CSC" for "Top
Level CSC (TLCSC)" and "Low Level CSC (LLCSC)" to make
MIL-STD-1521B consistent with DOD-STD-2167A.

- All applicable paragraphs: Substitute "CSU" for "unit"
to make MIL-STD-1521B consistent with DOD-STD-2167A.

- Paragraph 40.2.2.a: Delete reference to Interface
Requirement Specification(s) as "Minor" projects have no
interfaces to other systems.

- Paragraph 40.2.2.b: Delete paragraph. There are no
reserve memory/timing capacity requirements on "Minor"
projects.

- Paragraph 40.2.2.e: Delete paragraph. There are no
security requirements/issues associated with "Minor"
projects.

MIL-STD-152lB (REVIEWS AND AUDITS) (continued)

- Paragraph 40.2.2.m, 40.2.3.m: Delete reference to firm-
ware. Software will not be associated or implemented in
firmware for "Minor" projects.

- Paragraph 40.2.2.n: Delete reference to Computer Soft-
ware Operator's Manual and Computer System Diagnostic
Manual as these will neither be delivered in "Minor"
projects and no longer exists respectively.

- Paragraph 40.3.2.a, 40.3.2.b: Delete reference to
external interfaces since no "Minor" projects will
interface with other systems.

- Paragraph 40.3.2.f: Delete paragraph. There are no
requirements for system and/or nuclear safety where
"Minor" projects are concerned.

- Paragraph 40.4: Delete paragraph. There are no
requirements for HWCI design compliance with electromag-
netic compatibility/interference requirements where
"Minor" projects are concerned.

- Paragraph 4.5.11: Delete paragraph. There are no
subcontractors associated with "Minor" projects.

- Paragraph 40.6.11: Delete reference to HWCIs. There
are no HWCIs associated with "Minor" projects.

- Paragr& h 40.7.3. Delete paragraph. System/Segment
Specification and Interface Requirements Specifica-
tion(s) are not delivered where "Minor" projects are
concerned.

- Paragraph 40.13.1: Delete reference to System/Segment
Specification, HWCI development and Interface Require-
mnents Specifications. These are not associated/
applicable to "Minor" projects.

- Paragraph 40.18, 40.18.1, 40.18.2: Delete paragraphs.
These deal with hardware/physical equipment and are not
applicable to "Minor" projects.

MIL-STD-1521B (REVIEWS AND AUDITS) (continued)

CRITICAL DESIGN REVIEW (CDR)

- Documents to be reviewed:

1. Software Design Document.

2. Computer Resources Integrated Support Document.

3. Software User's Manual.

- Paragraph 50.1: Delete reference to Draft Hardware
Product Specification, Interface Design Document,
Hardware Development Specification, Computer Software
Operator's Manual, Software Programmer's Manual and
Firmware Support Manual. These items are not required
deliverables for "Minor" projects.

- Paragraph 50.1: Delete reference to the Computer System
Diagnostic Manual as this document has been eliminated
for DOD-STD-2167A.

- All applicable paragraphs: Substitute "Software Design
Document" for "Software Top Level Design Document,"
"Software Detailed Design Document" and "Data Base
Design Document." These documents have been combined
and incorporated into the Software Design Document of
DOD-STD-2167A.

- All applicable paragraphs: Delete all reference to "Top
Level CSC" and "Lower Level CSC" and substitute "CSC."
This makes MIL-STD-1521B compatible with DOD-STD-2167A.

- All applicable paragraphs: Delete all reference to
"unit" and substitute "CSU." This too lends compatibil-
ity between MIL-STD-1521B and DOD-STD-2167A.

- Paragraphs 50.1.1, 50.2.l.a-m, 50.3.1, 50.3.1.l.a-j,
50.4.a-c, 50.6.5, 50.9.1-3, 50.10 and all subparagraphs
(except 50.10.3.e), 50.12 and all subparagraphs,
50.13.5, 50.13.6, 50.15 and all subparagraphs, 50.16 and
all subparagraphs, and 50.18 and all subparagraphs:
Delete paragraphs. Paragraphs deal strictly in firmware
and HWCIs, and there are no firmware and/or HWCIs speci-
fications/changes associated with "Minor" projects.

- Paragraph 50.1.2.2.a: Delete paragraph. Sizing and
timing capacities/data are not required for "Minor"
projects.

100

MIL-STD-1521B (REVIEWS AND AUDITS) (continued)

- Paragraph 50.2.2.a: Delete reference to Interface
Design Document. This document is not a required
deliverable for "Minor" projects.

- Paragraph 50.2.2.c,e,f: Delete paragraphs. These items
are not required deliverables for a "Minor" project.

- Paragraph 50.3.2.c: Delete reference to timing, sizing
and storage requirements. There are no requirements to
specify reserve memory and/or timing capacities in
"Minor" projects.

- Paragraphs 50.5.1, 50.5.5, 50.5.7, 50.5.8, 50.6.1,
50.6.3, 50.7.1, 50.7.4, 50.13.3, and 50.13.4: Delete
all reference to HWCIs, hardware specifications and/or
external interface specifications. These items will not
be included/involved in "Minor" projects.

- Paragraphs 50.7.4.e and 50.8 and all subparagraphs:
Delete paragraphs as there are no safety issues/require-
ments in "Minor" projects.

APPENDIX D

SOFTWARE MAINTENANCE

DOD-STD-2167A does not cover the vital and increasingly

important area of software maintenance. The only remote

reference to software maintenance in DOD-STD-2167A comes

from paragraph 4.6.1, General Requirements, where it

includes maintenance as part of some general software

support concept/environment to be documented in deliverables

such as the Computer Resources Integrated Support Document

(CRISD), Computer System Operator's Manual (CSOM), and the

Software User's Manual (SUM). It states, "The contractor

shall provide to the contracting agency deliverable code

that can 1e regenerated and maintained using commercially

available, government owned, or contractually deliverable

support software and hardware that has been identified by

the contracting agency." (DOD-STD-2167A, 1988, p. 118) It

does, however, recommend several actions to be performed

that can be related to increased software maintainability:

1. Include the user and support communities in
requirements definitions, formal reviews and audits,
and other appropriate activities throughout the
software development process.

2. Require early and repeated deliveries of user and
support documentation to allow time for adequate
review and revision.

3. Work closely with the designated support agency to
determine what elements of the contractor's software

102

need to be designated as deliverables in order to

support the software. (MIL-HDBK-287, 1989, p. 13)

These actions are not adequate to maintain che usability and

reliability of a software product.

Software maintenance is defined as the "modification of

a software product after delivery to correct faults, to

improve performance or other attributes, or to adapt the

product to a changed environment." (ANSI/IEEE 729, 1983)

Maintainability, on the other hand, is "the ease with which

a software system can be corrected when errors or deficien-

cies occur, and can be expanded or contracted to satisfy new

requirements." (Schneidewind, 1987, p. 303) These defini-

tions are conventional. Changes are not confined to the

post-delivery phase, but are made during all life cycle

phases. Modifications to software must be managed effec-

tively during the entire life of the software. Software

maintenance represents 60-70% of the total cost of software

which runs into the tens of billions of dollars each year

(NBS Special Publication 500-130, 1985, pp. 5-6). Software

maintenance is a process that starts when determining user

requirements and never ends. It is a process of change

management and is not only concerned with changes to the

software, but includes changes to the associated documenta-

tion as well. (Schneidewind, 1989, p. 6) Strong effective

management of the entire process is needed to control the

effects and associated costs of software maintenance. The

1 -m

level of discipline invoked in the software maintenance

process, correlates to the quality of resultant software.

While software systems vary in function, type, and size,

many of the functions performed under software maintenance

are universal in scope. (NBS Special Publication 500-106,

1983, p. 2) Although no standards exist for maintenance,

management guides are available from the National Bureau of

Standards, which provide methodologies and procedures for

conducting an effective maintenance program. Suggested

guidelines to follow are:

1. Develop a software maintenance plan/policy. A soft-
ware maintenance policy should employ standards which
describe, in broad terms, the responsibilities,
authorities, functions, and operations of the software
maintenance organization. It must specifically
address the need and justification for changes, the
responsibility for making the changes, the change
controls and procedures, and the use of modern
programming practices, techniques and tools. It
should describe management's role in software
maintenance and define the process and procedures for
controlling changes to the software after a baseline
has been established. (NBS Special Publication 500-
106, 1983, pp. 51-52)

2. Ensure that desiqn documentation is available to main-
tainers at desiQn time, and that documentation
Quidance is in place that supports and results in
complete and accurate documentation. Too often, the
maintainer receives little, no, conflicting or
incorrect communication from those who have previously
handled the system. Thus, the problems of software
maintenance begin simply with a breakdown in
communication between those involved with ensuring
that the system does what it is supposed to do. On
many occasions the only source of information
available to the maintainer may be the documentation
and the code. Thus, good documentation is the only
reliable means for good communication (NBS Special
Publication 500-106, 1983, p. 15). As a minimum the
following should be standard documentation for
supporting maintenance: requirements specification,

104

design specification, program listing, test plan, and
test results (Schneidewind, 1989, p. 15).

3. Ensure that guidance exists to assist in the determin-
ation of when to rebuild/redesign a system vice
maintaining it. A major concern of managers and
software engineers is how to determine whether a
system is hopelessly flawed or whether it can be
successfully maintained. While there are no absolute
rules on when to rebuild rather than maintain the
existing system, some of the factors/characteristics
to consider in weighing a decision of this type can be
found in Table 4 of the NBS Special Publication 500-
106. These characteristics are meant to be general
"rules of thumb" which can assist a manager in
understanding the problems involved with maintaining
an existing system and in deciding whether or not it
has outlived its usefulness to the organization (NBS
Special Publication 500-106, 1983, pp. 20-25).

4. Develop formal policies for controlling software
chanQes. Regardless of the type of software
maintenance (perfective, adaptive, or corrective), the
key to controliing software maintenance is to organize
it as a visible, discrete function and, to the extent
possible, plan for it. Software changes must be
managed and controlled. (NBS Special Publication 500-
106, 1983, p. 26) All change requests should be
formal and written, and changes should be limited only
to those requests that have been reviewed and
approved. Changes should be approved only if their
benefits outweigh the cost of making them. No change
should be implemented without careful consideration of
its ramifications. All maintenance/changes should be
scheduled, and documentation and coding standards
enforced. Most importantly, to the extent possible,
plan for preventive maintenance.

5. Ensure that the source code employed in changes
supports maintainability. Many techniques and aids
exist to assist the system developer, but there has
been little emphasis on aids for the maintainer.
However, since the processes which occur in the
maintenance phase are similar to those of the
development phase, there is considerable overlap in
the applicability of the development aids in the
maintenance environment (NBS Special Publication 500-
106, 1983, p. 31). These ideas/techniques can improve
the maintainability of the systen and can therefore
make future maintenance efforts easier. Some of these
techniques are:

1 (-.mmm m m m mm

A. Use a single high level language.

B. Use standard coding conventions (variable names,
structures, formats, etc.).

C. Use modular structures.

D. Use standard data definitions.

E. Use meaningful comments in the code.

F. Use only standard compiler options.

The point is to not only develop systems with maintenance in

mind, but maintain them with future maintenance in mind.

(NBS Special Publication 500-130, 1985, p. 25)

6. Ensure that testing standards and procedures are
established to verify and validate the correctness of
changes. Testing is a critical component of software
maintenance. Testing is done to find errors, not to
prove that errors do not exist. Regression testing
and system testing should be performed in addition to
any unit, component and integration testing.
Regression testing will detect the introduction of any
"ripple effects" in the system and verify that the
maintenance modifications have preserved the
functionality of the system. System testing verifies
that the system produces the same results and
specifications. Overall, testing helps to provide
assurance that the activities of software maintenance
have been performed correctly.

7. Ensure that an appropriate set of quality metrics has
been established. A quality metric is a quantitative
measure of the degree to which software possesses a
given attribute that affects its quality. In order to
manage software change it is desirable to measure the
effects of change. This is accomplished with quality
metrics. (Schneidewind, 1989, p. 10) Basically, they
aid in understanding how software changes affect the
overall software system from a maintainability
standpoint.

8. Establish policy to determine the feasibility and
appropriateness of reusing software/existinQ code.
Research has shown that the quality of software
deteriorates when the only elements of the software
that are reused are the source and object code. By
effectively reusing the requirements, specifications,

106

design, documentation, test data, and other elements
on which the code is based, the quality of the
software can be maintained, or even enhanced during
repeated modifications which occur after implementa-
tion. (NBS Special Publication 500-130, 1985, p. 9)
Even if the code itself is not elegant and possibly
not reusable, a study of the specifications and
identification of the most frequently used components
could reveal a set of generic classes of algorithms
and functions which could be usable in future systems.
(Schneidewind, 1989, p. 30)

Prevalent throughout this discussion on software

maintenance were three recurring principles:

1. In order to maintain control over the software process
it is important that software maintenance be
anticipated and planned for.

2. Software maintenance must be performed in a structured
and controlled manner.

3. Systems must not only be developed with maintenance in
mind, they must be maintained with maintainability in
mind.

l07

APPENDIX E

SOFTWARE QUALITY ASSURANCE

Quality Assurance is a planned and systematic pattern of

actions necessary to provide adequate confidence that the

item or product conforms to established technical require-

ments (ANSI/IEEE STD 730, 1984, p. 9). Software Quality

Assurance should be fully integrated with the activities and

procedures of any software development project. Any

software quality program should be implemented in accordance

with a carefully prepared and documented "plan"; one that

was reviewed and approved by the division head/representa-

tive of each unit of the organization having responsibili-

ties defined within the plan. The plan should be a

compre' nsive document covering everything from defining

responsibility for Software Quality Assurance through

delineating the evaluation criteria governing each phase and

product of the software development effort. It should even

expound upon general management's role in the software

quality program.

DOD-STD-2167A addresses Software Quality Assurance in

requirements for software product evaluations (Paragraphs

5.>:.4). Detailed requirements of DOD-STD-2167A call for the

evaluation of specific deliverables (DIDs) at the completion

of each scftw:are development activity within a project.

. lCE

Each product/deliverable is to be evaluated against criteria

specified in Figures 4-10 of the standard, as applicable to

the project at hand. Default definitions for the criteria

are specified in Appendix D of DOD-STD-2167A. When discrep-

ancies are encountered, a problem/change report will be

initiated (in accordance with DOD-STD-480A/MIL-STD-481A) and

shall serve as input to the corrective action process.

Therefore, as a result of these evaluation activities, the

contractor/developer will have made an effort to ensure that

the deliverable item/product is acceptable in terms of its

ability to satisfy project requirements.

DOD-STD-2168, Defense System Software Quality Program,

supplements DOD-STD-2167A. DOD-STD-2168 specifies require-

ments for a software quality program, and not only requires

the evaluation of software products but also requires the

evaluation of all software development activities and

processes for compliance and adherence to a project's

planning document. The requirements of the standard are

documented by its own Data Item Description (DID), the

Software Quality Program Plan (SQPP)--DI-QCIC-80572. The

SQPP provides a vehicle for communicating information

relevant to DOD-STD-2168 requirements.

DOD-STD-2168 and its associated DID are very comprehen-

sive for evaluating all of the functional areas and software

development activities of a software project. DOD-STD-2168,

used in conjunction with DOD-STD-2167A, is more

109£

comprehensive than the set of requirements stipulated by the

IEEE Standard for software quality assurance plans

(ANSI/IEEE STD 730). (That is not to say that an organiza-

tion should not review this standard when establishing a

software quality program.) The DOD-STD-2168 requires that

the SQPP be placed under configuration and version descrip-

tion control prior to implementation. The standard's soft-

ware quality program includes the evaluation of all software

documentation, software qualification procedures, configura-

tion management and corrective action procedures, the

software development library, deliverable elements of the

software engineering and test environments, and partici-

pation in all formal reviews and audits.

Although DOD-STD-2168 and its associated DID are compre-

hensive in their coverage of the various functional areas of

a software development effort, the contents of the

individual paragraphs within both are very general in the

scope of their requirements and specifications. Both the

standard and the DID, like DOD-STD-2167A, are designed and

required to be tailored for each contract/development

project. Almost all paragraphs of both the standard and the

DID apply to both "Major" and "Minor" project categories at

FNOC. Paragraph 1.2.2 of DOD-STD-2168 should be deleted for

all "Minor" projects (no "Minor" projects have a requirement

for software to be implemented in firmware) and for those

"Major" projects that do not involve hardware/firmware

110

changes. Likewise, all reference to hardware/firmware in

paragraph 5.6 should also be deleted. Paragraph 5.8 and all

of its subparagraphs should be deleted with respect to all

"Minor" projects as there are no requirements for subcon-

tractor involvement in FNOC "Minor" software development

efforts. All other paragraphs of DOD-STD-2168 apply. All

paragraphs of the Software Quality Program Plan DID, DI-

QCIC-80572, apply to both software project categories.

Application of the standard and the DID, as with DOD-STD-

2167A, will have to be evaluated on a case by case basis for

TNOC "Intermediate" projects.

There will be no duplication or conflicts created if

DOD-STD-2168 is implemented in conjunction with DOD-STD-

2167A. It is the opinion of this author ttkt DOD-STD-2168

be incorporated and utilized in every software development

project regardless of its category.

i-li

APPENDIX F

SOFTWARE METHODOLOGY: PROTOTYPING

DOD-STD-2167A is designed with the flexibility to be

compatible with any software development methodology. It

doesn't endorse the use of any explicit default methodology.

It adheres to the idea that the contractor/developer should

be responsible for selecting the software development method

that best supports the achievement of contract/project

requirements. The only constraint imposed by DOD-STD-2167A

is that the software development method must be systematic,

well documented and support formal reviews and audits

required by the contract/project.

Prototyping is a systems development methodology that is

gaining rapid acceptance by an increasing number of

businesses. Prototyping is an implementation-oriented

design approach where emphasis is placed on constructing a

working model (prototype) of a system as quickly as

possible. Design by prototyping consolidates the defini-

tion, design, and at least part of the construction phases

of the system development life cycle. Prototypes are itera-

tively developed and refined to meet users' requirements

and, in some cases, are gradually transformed into the final

syster. Systems analysts, utilizing non-procedural/fourth-

generation languages, can use prototyping to significantly

112

decrease the time required to develop an information system.

(Whitten, Bentley, Ho, 1986, pp. 166-168)

Standards are very important to a prototyping team.

Without them, everything is a personal product without

availability to other team members. Communication between

team members requires adhering to a productive set of

standards. (Boar, 1984, p. 70)

Prototyping standards need to be developed within an

organizational context designed to meet a particular

environment. However, there are several "generic"

guidelines/principles that could be followed by any software

development project team that chooses prototyping as its

software development methodology:

1. Ensure that the contractor/developer has established
guidelines/criteria for determining whether an
application is a suitable project for prototyping or
whether the use of prespecification would be more
appropriate. The selection of good candidate systems
for prototyping is a project sensitive one. All
applications are not good candidates. All candidacy
factors need to be considered before reaching a
prudent conclusion. Suitability requires a balanced
evaluation of a number of factors: system structure,
logic structure, user characteristics, project
management, application constraints, and environmental
assumptions (Boar, 1984, p. 63). A good starting
point is that good candidates for prototyping are
those applications that are on-line/transaction
processing oriented with many data elements and record
relationships but few algorithmic processes. (Boar,
1984, p. 64)

2. Ensure that the contractor/developer still follows a
Life Cycle approach to support the PrototypinQ
methodology. Prototyping should not be used as a
shortcut to systems development. The prototyper still
has to build a working model with all of the problems
inherent in building any computer application. The
prototyper must build a working model consisting of

113

some of the proposed system's required elements,
records, screens, reports, and programs. To
accomplish this the prototyper still needs guidelines
and rules to permit efficient development like any
other application developer. Although the prototype
life cycle may be somewhat different from the
conventional SDLC (due to its consolidation of the
definition and design phases with the construction
phase), even prototyping can solve the wrong problems
just as any of the other more traditional design
methodologies. "A life cycle (for prototyping) is
necessary to insure the delivery of a malleable
prototype with sufficient functionality and
completeness to be representative of the ultimate
system. A prototype without these attributes will
result in the same thrashing and churning that is
characteristic of traditional analysis methods and the
anticipated benefits will be lost." (Boar, 1984, p.
60)

3. Ensure that the contractor/developer does not try to
directly implement the prototype as the final system.
In some cases, through successive iterations, a
prototype can become the final system. However, for
the most part, prototypes are "models" representing
the final system. Unless that which has been
prototyped is trivial or a minor extension to an
existing application, there is much left to be done.
The purpose of the prototype stage is to quickly
establish and iteratively refine the user's basic
requirements. The purpose of an actual system is to
implement those requirements in the context of many
other requirements. Prototyping does not deliver a
magical solution to eliminating all the necessary
steps and considerations necessary to create a system
that will work in a production environment. Prototyp-
ing can address in an excellent manner the issues of
data, functionality, and user/machine interface but
does not address performance issues, sizing issues,
documentation issues, or training issues. (Boar,
1984, pp. 102-103) The entire issue of whether you
can directly implement a prototype is one of honestly
admitting the realities of development. A prototype,
by intent and design, is not an operational system.
Attempting to implement such a production system will
only result in new problems as the ignored issues
surface. (Boar, 1984, p. 104)

4. Ensure prototyping is performed by small teams. Pro-
totyping cannot be performed by large teams. The
optimur size uf a prototyping team is two people with
perhaps a third member doing supplementary support

114

functions for multiple projects. (Boar, 1984, p. 109)
A small team is necessary in order to keep overhead
and miscommunication to a minimum. Communication
problems grow exponentially while marginal productiv-
ity declines as team size grows. In addition, to
achieve conceptual unity and maintain integrity in
implementation, the number of creators must also be
kept at a minimum (Boar, 1984, p. 109). A twosome
will almost instinctively maintain product unity and
will best be able to integrate the next piece with
completed work.

5. Ensure that proper project management procedures are
in place for prototvping. Prototyping is a subprocess
of the greater development activity and as such comes
under the control of the project management function.
Prototyping does not alter the requirement to apply
sound management practices to an overall project. It
does, however, require some modifications. The
prototyping phase requires a reasonable amount of
looseness and flexibility in order to encourage the
innovative nature and quickness characteristic of this
phase. Formalities and bureaucracies would defeat the
entire thrust of the prototyping process, discourage
change, and retard the rapidity of the process. The
prototyping process will self-correct itself during
iteration if a major mistake is made.

6. Ensure that prototyping software exhibits those
requirements that optimize the productivity of the
prototyper. Most significant of these requirements
are:

a. data dictionary driven.

b. structurally encourages component engineering

c. enables "cutting and pasting" of new components
from existing components.

d. provides an interactive prototyper workbench.

e. pernits declarative specification rather than
procedural specification.

f. automatically generates application documentation.
(Boar, 1984, p. 115)

Prototyping is a very comprehensive subject that to

fully explain anJ decipher would require the concentration

115

of a separate research effort. However, an extensive

discussion on prototyping is not the focal point of this

thesis. Prototyping is a high productivity strategy for

solving some real world problems of defining business system

requirements. Its success is anchored in a simple yet

elegant formula: start small, gain acceptance, evolve

(Boar, 1984, p. 207).

11

LIST OF REFERENCES

ANSI/IEEE Standard 729, An American National Standard IEEE
Standard Glossary of Software Engineering Terminology,
1984.

ANSI/IEEE Standard 730, IEEE Standard for Software Quality
Assurance Plans, 1984.

Boar, B.H., Application Prototvping: A Requirements
Definition for the 80s, John Wiley & Sons, Inc., 1984.

Braverman, P.H., "Yes, Folks, Standards Are a Many
Splendored Thing," Computer, 12, July 1979.

Department of Defense, DOD-STD-480A, Configuration Control--
Engineering Changes. Deviations and Waivers, 12 April
1978.

Department of Defense, DOD-STD-2167A, Defense System
Software Development, 29 February 1988.

Department of Defense, MIL-STD-481A, Configuration Control--
Engineering Changes, Deviations and Waivers (Short
Form), 18 October 1972.

Department of Defense, MIL-STD-490A, Specification
Practices, 4 June 1985.

Department of Defense, MIL-STD-499A, Engineering Management,
1 May 1974.

Department of Navy, MIL-HDBK-287, A Tailoring Guide for DOD-
STD-2167A, Defense Syste Software Development, 21 June
1989.

Fleet Numerical Oceanography Center, Change of Command
Brochure, 1989.

Fleet Numerical Oceanography Center, 1986 Master Plan, 1986.

Fleet Numerical Oceanography Center, Software Improvement
Progran Macroplan 1.0, April 1988.

Newport, J.P., "A Growing Gap in Software," Fortune, 28
April 19S6.

I17

Peters, L., "A Conceptual Basis for Software Design
Standards," Proceedings of the Software Engineering
Standards Application Workshop, Silver Springs, MD: IEEE
Computer Society Press, 1981.

Pressman, R.S., Software Engineering: A Beginner's Guide,
McGraw-Hill, Inc., 1988.

Poston, R.M., "Software Standards," IEEE Software, 1,
January 1984.

Schneidewind, N.F., "Software Maintenance: The Need for
Standardization," Proceedings of the IEEE, April 1989.

Schneidewind, N.F., "The State of Software Maintenance,"
IEEE Transactions on Software Engineering, Vol. SE-13,
No. 3, March 1987.

Tausworthe, R.C., Standardized Development of Computer
Software: Part II, Standards, California Institute of
Technology, 1978.

Telephone conversation between David S. Maibor, David Maibor
Associates, Inc., Needham Heights, MA, and the author,
17 May 1989.

Telephone conversation between Jane Radatz, Logicon, Inc.
Strategic and Information Systems, San Diego, CA, and
the author, 17 May 1989.

United States Air Force, MIL-STD-483A, Configuration
Management Practices for Systems. Eguipment. Munitions,
and Computer Programs, 4 June 1985.

United States Air Force, MIL-STD-1521B, Technical Reviews
and Audits for Systems, Eauipments, and Computer
Software, 4 June 1985.

U.S. Department of Commerce, National Bureau of Standards,
Executive Guide to Software Maintenance, NBS Special
Publication 500-130, October 1985.

U.S. Department of Commerce, National Bureau of Standards,
Guidance on Software Maintenance, NBS Special
Publication 500-106, December 1983.

Whitten, J.L., Bentley, L.D., and Ho, T.I.M., Systems
Analysis and Design Methods, Times Mirror/Mosby College
Publishing, 1986.

118

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Professor Barry Frew, Code 54Fw 2
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

4. Professor Tarek Abdel-Hamid, Code 54Ah 1
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

5. Mrs. Jeanne L. Frew, Code 008 2
Fleet Numerical Oceanography Center
Monterey, California 93940

6. Curricular Officer, Code 37
Computer Technology Programs
Naval Postgraduate School
Monterey, California 93943-5000

7. LT William T. Livings, USN
1557 Willimantic Drive
Virginia Beach, Virginia 23456

119

